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ABSTRACT 

  Kim, Young June. Ph.D. The University of Memphis. August 2011. Novel 

Feature-Based Methods for Improved Glaucoma Detection and Progression Prediction. 

Major Professor: Khan M. Iftekharuddin, Ph.D.  

 

  Glaucoma is a leading cause of blindness worldwide. Since glaucomatous vision 

loss is irreversible, early detection is essential to prevent or manage this disease. 

Assessing retinal nerve fiber layer (RNFL) using imaging technologies plays an 

important role in early glaucoma detection. However, accurate evaluation of the RNFL 

using such technologies can be limited due to overlaps. In literature, feature-based 

techniques such as fast-Fourier analysis and wavelet-Fourier analysis have shown better 

diagnostic capability over the standard methods. Nevertheless, such techniques may not 

fully represent local variation and randomness in the RNFL. 

  Similarly, progression prediction is also critical. Assessing visual field (VF) data 

using standard automated perimetry (SAP) has been widely used in diagnosing 

glaucomatous progression. However, use of VF data is functional and subjective and VF 

data analysis may not fully indicate true progression due to short-term and long-term 

fluctuation. Hence, diagnosis of progression in an objective and quantitative manner still 

remains challenging. For progression prediction, it is necessary to differentiate the 

patients according to the severity of progression. Consequently, progression prediction at 

different disease stages may require classifiers involving more than two classes. 

  The primary contribution of this dissertation is investigation of feature-based 

techniques that exploit novel fractal features. These fractal features have shown better 

characterization of local variation and randomness in structural changes in the RNFL. 

Consequently, our novel fractal features offer improved glaucoma detection and 
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progression prediction capability than the standard methods and other feature-based 

techniques. A novel multi-class classification is further proposed for enhanced 

progression prediction.  

  Glaucoma is known to be characterized by both structural and functional changes. 

For a complete assessment of glaucoma, it is therefore essential to consider both 

structural and functional changes. In this work, we exploit a known topographic 

correspondence between structural and functional data for selective fusion of respective 

features from both data for improved glaucoma detection.  

  Statistical analyses show that our novel fractal features, multi-class classification 

and selective fusion of structural and functional data have better diagnostic and predictive 

capability of glaucoma and glaucomatous progression, when compared with the existing 

standard and feature-based techniques. 
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PREFACE 

  This dissertation follows the guideline of Proc. of SPIE Medical Imaging 2011. 

This dissertation was also submitted to Proc. of SPIE Medical Imaging 2011 for 

publication.   
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1. Introduction 

1.1. Dissertation Overview 

  Glaucoma is a slow progressive optic neuropathy in which there is an accelerated 

loss of retinal ganglion cells. Its primary form, primary open angle glaucoma (POAG), 

leads to progressive cupping of optic disc, thinning of retinal nerve fiber layer (RNFL) 

and visual field (VF) damage 
1
. Once glaucomatous damage has occurred to the optic 

nerve, it is irreversible. Hence, its early detection and thus intensifying treatment is the 

best way of managing the disease. However, since POAG has no obvious symptoms or 

signs until there is severe vision loss it is difficult to identify in its early stages 
2
. Over the 

years, testing VF defects, examining the shape of the optic disc, and evaluating the RNFL 

have been used to diagnose glaucoma. Among these methodologies, assessing the RNFL 

has been an integral part of glaucoma detection 
3-4

. Generally, assessing the RNFL 

requires sophisticated non-invasive medical imaging technologies such as scanning laser 

polarimetry (SLP) and optical coherence tomography (OCT) 
5-6

. 

  The version of SLP that this dissertation work utilizes is GDx-variable corneal 

compensator (GDx-VCC: Carl Zeiss Meditec Dublin, California, software version 

5.4.0.27). GDx-VCC measures the anterior segment birefringence and determines an 

estimate of polarization retardation. The polarization retardation is then converted to an 

estimate of the thickness of the RNFL 
7
. The version of OCT that this work utilizes is 

StratusOCT (Carl Zeiss Meditec USA, software version 4.04). StratusOCT measures 

infrared light waves that reflect off the retina. By adopting interferometry, StratusOCT 

obtains interference fringes which are electronically processed to determine reflectivity 

values of the sample as a function of the depth of the RNFL 
8
.  
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  The assessment of the RNFL either by SLP or OCT may be done using its mean 

values at different locations around the parapapillary retina at a given distance from the 

optic disc as a function of angle. Such a thickness graph is known as a temporal, superior, 

nasal, inferior, and temporal (TSNIT) graph. A TSNIT graph measures the thickness of a 

ring around the optic disc. The TSNIT graph shows a general double-hump pattern due to 

a much greater number of ganglion cells and their axons entering the optic disc superiorly 

and inferiorly.  

  Although the mean values of the RNFL TSNIT graphs are sufficient in group 

separation (glaucomatous from normal eyes), its classification performance can be quite 

limited due to the overlaps among early glaucomatous eyes. The overlaps cause a wide 

range of ocular normal values 
9
. To address this issue further, GDx-VCC inherently has a 

classifier called the Nerve Fiber Indicator (NFI). The NFI is a global parameter and 

ranges from 0 to 100. A value of 0 represents absolute ocular normality and a value of 

100 represents absolute glaucoma 
5, 7

. However, the classification performance of the NFI 

can be also limited and many more challenges remain especially in early glaucoma where 

the RNFL damage is not overt. Furthermore, since the NFI is a global parameter, there 

can be early glaucoma cases with local RNFL defect not fully reflecting abnormality 
7
. 

Additionally, with no built-in classifier in StratusOCT, there are inherent differences 

between the RNFL thickness measured by GDx-VCC and that measured by StratusOCT 

8, 10-21
. This issue requires more careful research work.  

  In the literature, feature-based techniques over the RNFL TSNIT graphs have 

been found more useful in identifying glaucomatous damage than the NFI alone such as 

fast-Fourier analysis (FFA) and wavelet-Fourier analysis (WFA) 
22-23

. However, FFA or 
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WFA features may not fully represent the inherent randomness and irregularity of the 

RNFL damages. Furthermore, since FFA and WFA are linear processes they may 

generate more number of features whereas there may be a nonlinear process that requires 

small number of features. Accordingly, there is a need for systems and methods for 

detecting glaucoma that outperform both currently available technology and feature-

based techniques such as FFA and WFA. 

  From many successful research endeavors, fractal analysis (FA) has proved to be 

more effective in many medical imaging applications such as the detection of micro-

calcifications in mammograms, the prediction of osseous changes in ankle fractures, the 

diagnosis of small peripheral lung tumors and the identification of breast tumors in 

digitized mammograms 
24-26

. In our Intelligent Systems and Image Processing (ISIP) lab, 

pediatric brain tumor regions have been successfully segmented from normal brain 

regions by applying a multi-fractal feature-based technique on pediatric brain magnetic 

resonance imaging (MRI) 
27-32

. 

  Therefore, in this dissertation work, we investigate the feature-based techniques 

for improving the classification performance in early glaucoma detection. We utilize 

novel features such as fractals and multi-fractals. The novel algorithm based on fractal 

and multi-fractal features adopts pseudo 2D representation converted from 1D TSNIT 

RNFL data. Our novel algorithm has shown its enhancing diagnostic ability on glaucoma 

33
 and has offered comparable results with the existing feature-based techniques such as 

FFA and WFA 
22-23

. In addition, above-mentioned feature-based techniques use only 1D 

or pseudo 2D TSNIT RNFL data and thus may not fully exploit the real 2D eye scan data. 
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Consequently, we also investigate the feature-based 2D fractal techniques using real 2D 

RNFL image data which may provide more information. 

  Detecting or predicting glaucomatous progression has been known to be essential 

in the treatment of glaucoma patients in that such detection or prediction may prevent the 

glaucomatous eyes from further worsening and eventual blindness. Over the years, 

assessing a series of visual field (VF) data using standard automated perimetry (SAP) has 

been a major method in detecting and monitoring the progression 
34-35

. However, SAP is 

a functional test and inherently subjective in nature. There is high possibility that a 

patient‟s psycho-physical condition affects their alertness level: the reaction of the patient 

to the visual stimuli may fluctuate 
35

. Such variability makes it difficult to distinguish 

actual progression from random variations. Hence, SAP results may not fully represent 

true progression from variability. 

  It has been well known that structural changes often precede distinguishable 

functional changes in glaucoma and that the subtle changes in the RNFL may also 

indicate the risk of the progression 
3-4

. Since structural changes are measured in an 

objective and quantitative manner, such changes may better characterize the mechanism 

of the progression. In this respect, the evaluation of the RNFL using imaging 

technologies such as SLP and OCT can be a good candidate of more correctly detecting 

or predicting the progression than the evaluation of functional changes in VF data using 

SAP 
34-35

. However, since the structural progression is slow and heterogeneous, it is very 

difficult to predict future progressive changes in specific patients. Gunvant et al. report 

that a feature-based technique such as WFA has successfully predicted the progression 

using SLP data with the AUROC of 0.86 
36

. Essock et al. also report the AUROC of 0.83 
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on SLP data in predicting which patients would progress by obtaining the linear 

discriminant function (LDF) using the training dataset consisting of glaucomatous and 

ocular normal patients and applying the obtained LDF to the testing data 
37

. Such 

research works provide substantial promise but the better performance is anticipated, in 

that detecting the progression using the RNFL evaluation has not been validated or 

standardized 
38

. Hence, it is desirable to establish a feature-based technique that detects 

and predicts the progression using the novel features such as fractals and multi-fractals. 

We explore the possibility of obtaining novel features that best characterize the presence 

of glaucomatous progression. After obtaining such novel features, we investigate the 

potential of establishing a statistical model which best predicts progressors from non-

progressors or ocular normal patients. 

  For the task addressed as above, it may require more than just two-class 

classifiers. In statistical analyses, two-class classification has been widely adopted and 

one of such methods has been support vector machine (SVM). SVM has been extensively 

used due to its simple geometrical interpretation, statistical robustness and overfitting 

control 
39-40

. Nevertheless, directly applying a two-class SVM on a nonlinearly separable 

multi-class problem may not result in better classification performance, especially in 

determining the multi-staged glaucomatous progression 
41

. A kernel-based SVM has been 

proved to be effective in dealing with nonlinearly separable data, due to its capacity of 

mapping the input data space into the pre-determined kernel-based feature space 
42-43

. In 

addition, a Gaussian kernel has been known to have a corresponding infinite-dimensional 

feature space with its well regularized bounds. It is highly possible that variations of a 

Gaussian kernel can well separate nonlinearly separable input data by mapping the input 
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data. Hence, a Gaussian kernel-based multi-class SVM classifier is investigated in 

predicting the progression.  

  Recently, there have been attempts to combine features and classifiers to enhance 

the classification performance 
44-46

. There are also research efforts for combining 

structural and functional dataset for the detection of glaucoma 
47

. For such a task as 

combining structural and functional dataset for better detecting glaucoma, it has been 

known that the relationship between structural and functional data should be explained 
48

. 

It has been shown that glaucoma-related structural (e.g., RNFL defect) and functional 

changes (e.g., VF defect) are closely related to each other. There have been works in 

comparing different methods in structural and functional analyses to distinguish 

glaucoma from ocular normal patients 
49

. Generally, it is known that there is a local 

correspondence between structural and functional data even with different methodologies 

used to measure structural and functional changes. However, very few studies have 

investigated such a correspondence between local structural measurement and functional 

losses in the same individuals 
48

. Further, very few fusion methods of different feature 

sets for enhancing the classification performance of glaucoma detection have been 

reported. Hence, it is desirable to develop the models that analyze both structural and 

functional data simultaneously and fuse the respective features from them for better 

glaucoma detection. Consequently, we aim to develop a feature-based selective fusion 

method for improved glaucoma detection. 

 

 

 



www.manaraa.com

                                                                                                                                                                                                                                                                      

7 

 

1.2. Dissertation Aims 

   

 
 

Figure 1-1. The overall flowchart of the dissertation aims 
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  Following the above discussions, we discuss the aims of this dissertation.  The 

overall flowchart that outlines the aims of this dissertation work is shown in Fig. 1-1. In 

Aim #1, we investigate the novel features such as fractal and multi-fractal for improved 

glaucoma detection on 1D TSNIT RNFL and real 2D RNFL data obtained from SLP and 

OCT. In Aim #2, we study the novel fractal/multi-fractal features and application of 

multi-class classification that best characterize the mechanism of glaucomatous 

progression in order to detect or predict the progression. In Aim #3, we investigate 

feature-based fusion of structural and functional data for improved glaucoma detection. 

This step leads to obtaining a global classifier that identifies glaucoma and predicts the 

progression by fusing structural and functional data. We discuss each aim below. 

 

Aim #1: To study novel features such as fractal and multi-fractal in addition to existing 

FFA and WFA features extracted from 1D TNSIT RNFL and real 2D RNFL data 

obtained from SLP and OCT for improved glaucoma detection.  

Rationale #1 

  As discussed before, there remain inherent challenges in extracting the 

representative features from the 1D TSNIT RNFL data via existing feature-based 

techniques such as FFA and WFA. The heterogeneous nature of glaucoma in 1D TSNIT 

RNFL data makes the feature-based techniques more difficult. The embedded 

randomness and irregularity of the RNFL damages may not be fully characterized with 

such analyses alone. The FA using fractal and multi-fractal features is a compact way of 

encoding the complexity of many natural objects. Fractal features are known to be very 

effective at simulating natural shapes. If the fractal dimension (FD) is in the appropriate 
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range, the fractal-based model begins to mimic the nature very closely. Fractal features 

have been investigated with local models to describe local irregularity 
27

. In prior studies, 

fractal features have shown their effectiveness in differentiating tumor from normal brain 

tissues using brain magnetic resonance imaging (MRI) 
24

. We have also investigated 

different fractal and multi-fractal feature-based techniques for brain tumor analysis and 

segmentation 
28

. Since the malformation of biological tissues in cancerous area, which 

show irregularity and randomness, have been well characterized by fractal and multi-

fractal features, it is reasonable to apply FA to the glaucomatous damage where 

irregularity and local randomness are expected to be present. Hence, it is believed that 

investigation to mathematical and statistical models using fractal and multi-fractal 

features will lead to improved glaucoma detection.  

  Further, it has been shown that existing feature-based techniques only adopted 1D 

TSNIT RNFL data, while original RNFL data are real 2D image data. No standardized 

method in exploiting real 2D RNFL image data has been presented and its statistical 

analysis has not been fully performed. In literature, a higher dimensional OCT has been 

experimented for discriminating glaucomatous from normal eyes with moderate success 

50]. Intuitively, if we take advantage of real 2D RNFL image data where hidden 

irregularity may contribute to the characteristic of the disease, we may be able to achieve 

improved glaucoma detection. Hence, we also study the 2D fractal feature-based 

techniques using real 2D RNFL image data, which may provide more useful information. 
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Aim #2: To study novel fractal/multi-fractal features and application of multi-class 

classification for characterizing the mechanism of glaucomatous progression and 

improved progression prediction.  

Rationale #2 

  It has been known that while analyzing a series of VF data is useful in detecting 

glaucomatous progression, structural changes in the RNFL often precede VF loss and that 

the progression may be difficult to be differentiated from the test variability of the VF 

test. Hence, predicting glaucomatous progression in an objective manner by assessing the 

progressive structural damage to the RNFL still remains challenging. It has been also 

shown that glaucomatous progression is multi-staged, which may require a multi-class 

classifier that separate a nonlinearly separable data.  

  A multi-class SVM classifier with a Gaussian kernel has a corresponding infinite-

dimensional feature space, which is well regularized 
42

. A special case of a SVM 

Gaussian kernel method has shown its capacity of separating nonlinearly separable input 

data for the multi-class classification 
43

. Hence, in this work, we evaluate and compare 

the effectiveness of the fractal/multi-fractal features and a multi-class SVM classifier 

with Gaussian kernel method for best characterizing the mechanism of progressive 

structural changes for improved glaucomatous progression prediction.  
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Aim #3: To investigate feature-based selective fusion of structural (e.g., RNFL 

assessment) and functional (e.g., VF test) data to build a global classifier that better 

detects glaucoma. 

Rationale #3 

  There are ongoing research efforts in identifying glaucoma utilizing both 

structural and functional measures 
47-48, 51

. Additionally, it has been reported that the 

different procedures used in the various studies agree with each other only about 50%-

60% of the time 
49

. Lauande-Pimentel et al. proposed the creation of the integrated LDFs 

for both SLP and VF data. They reported higher sensitivity and specificity but their 

approach is simple pair-wise parameter fusion 
51

. In their report, the corresponding 

structural and functional relationship has not been fully reflected. In this research work, 

we plan to investigate the effectiveness of fusing structural and functional data at the 

feature level exploiting known topographic correspondence between structural and 

functional data. 

  A functional analysis on VF data has been done using the total deviation (TD), 

mean deviation (MD) and pattern standard deviation (PSD), which are global indexes 
57

. 

Total Deviation (TD) values represent the difference between a patient‟s test results and 

the expected age-corrected normal values at each test point in the VF. MD is obtained by 

averaging the TD. PSD is similar to TD, except that the values have been adjusted for any 

shifts (e.g., cloudy media, cataracts or small pupils). While TD, MD and PSD have been 

successfully utilized in differentiating glaucomatous from ocular normal patients, since 

they are global values, they cannot be used in a localized analysis of glaucomatous 

damages. 
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  We plan to utilize a cluster-wise approach where 10 different clusters are locally 

analyzed, weighted and selectively fused between structural and functional data. We also 

explore the classification of classifier fusion utilizing AdaBoost or AdaBoostSVM so as 

to build a global classifier that independently identifies glaucoma and predicts the 

progression. 

 

1.3. Dissertation Contributions 

  In this section, the novel contributions in this dissertation work are summarized. 

Note our contributions follow the above three research aims and are shown as follows:  

1. We demonstrate that our novel fractal/multi-fractal features well represent the 

structural and functional changes to the 1D TSNIT RNFL and VF data where there are 

embedded local variation and randomness. 

2. We also show that our novel fractal/multi-fractal features outperform the existing 

standard methods and other feature-based techniques in glaucoma detection. 

3. We demonstrate that our feature-based techniques that exploit novel fractal/multi-

fractal features best characterize the mechanism of multi-staged glaucomatous 

progression in structural data and thus prove its efficacy in comparison to the existing 

feature-based techniques.  

4. We first introduce our novel application of multi-class SVM classification using a 

Gaussian kernel, which better predicts glaucomatous progression than the existing non-

linear techniques such as neural networks.  
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5. We propose the first feature-based fusion of structural and functional data, which 

performs better or comparably in comparison to the standard methods and the existing 

feature-based techniques. 

 

1.4. Dissertation Organization 

 

  In chapter 2, a brief description of glaucoma and glaucomatous progression is first 

provided. Then, the fundamentals of imaging technologies such as scanning laser 

polarimetry (SLP) and optical coherence tomography (OCT) are reviewed. For functional 

analysis, the review of visual field (VF) test is included. The feature-based techniques 

such as FFA, WFA and FA are generally reviewed. Then, a multi-class SVM and a 

Gaussian kernel method are discussed along with a feature/classifier fusion method. In 

chapter 3, based on the discussion in the previous sections, a detailed research work, 

“Identifying Glaucoma Using Fractal Features” is provided. In chapter 4, “Novel 

Fractal/Multi-Fractal Features and Application of Multi-class Classification for Improved 

Progression Prediction” is described. “Feature-based Selective Fusion of Structural and 

Functional Data for Improved Glaucoma Detection” is extensively discussed in chapter 5. 

All relevant discussions and experimental results of those works are provided in the 

respective chapters. Finally, chapter 6 describes the concluding remarks and future 

directions.   
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2. Background Review 

2.1. Glaucoma and Progression 

  Glaucoma is a progressive irreversible optic neuropathy that leads to optic disc 

shape change, retinal nerve fiber layer (RNFL) thinning and visual field (VF) defects. 

According to World Health Organization (WHO), glaucoma is one of the leading causes 

of blindness worldwide, affecting more than 60 million people in the world and about 4 

million individuals in the United States 
52-54

. As humans live longer, glaucoma may affect 

more people and thus economic burden of society may increase.  

  The most common form of glaucoma, primary open angle glaucoma (POAG), is 

known to have an elevated intraocular pressure (IOP) causing damage to the optic nerve. 

The optic nerve consists of ganglion cell axons which connect to neurons in the brain. 

The retina, the paper-thin tissue lining in the back of the eye, has about 0.75 to 1.25 

million retinal ganglion cells 
55

. The axons of these ganglion cells constitute the layer 

termed retinal nerve fiber layer (RNFL). At a cellular level, glaucoma is characterized by 

a progressive and rapid death of the ganglion cells and their axons by a process of 

apoptosis which is measured as a progressive thinning of the RNFL. Figure 2-1 shows the 

cross section of the human eye which illustrates the ganglion cells and their axons of the 

retina 
56

. 

  Over the years, diagnosing glaucoma has involved a variety of methodologies, 

including measuring intraocular pressure (IOP) via tonometry, testing VF loss via 

standard automated perimetry (SAP), analyzing the RNFL by either scanning laser 

polarimetry (SLP) or optical coherence tomography (OCT), assessing optic disc changes 

via ophthalmoscopy, and inspecting the drainage angle via gonioscopy 
57

. There are also 
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certain risk factors that can be useful in diagnosing glaucoma such as age, ethnic 

background, and medical history. However, since the exact cause of glaucoma has not 

been known and that POAG can impair one‟s vision before any signs or symptoms are 

apparent, it is difficult to early diagnose glaucoma with these methods only. 

 

 
 

Figure 2-1. A cross section of the human eye with the enlargement of the retina 
56

 

 

  Studies have shown that the RNFL can be damaged up to 50 % before the 

detection of the visual defect in glaucomatous patients 
13

. It is also known that the 

structural damage such as the RNFL defect precedes functional damage up to six years 

before the development of VF loss 
3-4, 58

. Hence, the assessment of the RNFL damage can 

lead to an early detection of glaucoma. 

  One key to the management of glaucoma involves monitoring the patient‟s visual 

status change. If an eye diagnosed as having glaucoma gets worse, it is referred to have 

“progressed” (a „progressor‟). If it does not progress, it remains stable and is called as a 
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„non-progressor‟ over that specific time-frame. Nevertheless, there is possibility that this 

eye may “progress” later. If an eye “suspected” of being at risk of glaucoma gets worse 

and comes to meet the definition of glaucoma, it will be defined as “converted.”  

  While assessing a series of VF data acquired by SAP has been widely used in 

diagnosing glaucomatous progression, it is functional and subjective in nature, which 

may not fully indicate true progression in structure due to the short-term fluctuation (SF) 

and the long-term fluctuation (LF). SF is obtained when the pre-selected points are tested 

twice and the difference of the patient‟s responses is compared. LF is obtained by 

measuring the changes in threshold between VF tests. Hence, the ability to detect or 

predict glaucomatous progression in an objective manner still remains challenging in the 

management of the glaucoma.  

  Glaucomatous progression prediction has been an active area of research 
36-38, 59-62

. 

Gunvant et al. and Essock et al. respectively report a feature-based technique and a LDF-

based approach that achieve classification performance with moderate accuracy 
36-37

. 

Medeiros et al. report eyes that are not detected as progressing by SAP may have a 

statistically significant decline in the GDx-VCC RNFL thickness measurement over time 

38
. They propose a statistical technique to determine the progression. In 

59
, Medeiros et al. 

actually measure the sensitivity and specificity of OCT parameters to discriminate 

progressors from non-progressors. Vermeer et al. have presented a novel spatial 

coherence criterion (SCC) from GDx-VCC images for differentiating progressors from 

non-progressors 
60

. However, they have achieved relatively low sensitivity (42%) 

compared with that of others 
61

. Alencar et al. point out that the normal eyes may have 

different characteristics from the progressive eyes followed in clinical practice 
62

. Note 
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that all of such works in glaucomatous progression prediction utilize the 1D TSNIT 

RNFL data, except Arnalich-Montiel et al. who take VF data as their features. Therefore, 

in this work, we propose a novel feature-based technique that adopts novel features such 

as fractal/multi-fractal and a multi-class classifier to detect and predict the progressive 

RNFL loss. 

 

2.2. Structural Analysis: RNFL Thickness Measurement 

2.2.1. Scanning Laser Polarimetry (SLP) 

  Scanning laser polarimetry (SLP) provides us with a patient‟s ocular structure by 

estimating the thickness of the peripapillary RNFL based on the birefringent property of 

the RNFL 
4-5

. SLP utilizes a polarized light which has two orthogonal components: 

ordinary and extra ordinary light. The axonal microtubules of the RNFL have an 

organized and parallel structure. When a polarized light, an illuminated laser beam, 

reaches this structure of the RNFL, the phase-shift (retardation) of light occurs due to the 

peculiar anatomy of the RNFL, causing a change in the state of the polarized light, which 

is called birefringence as shown in (1). The amount of the phase-shift (retardation) is 

directly proportional to the thickness of the RNFL (approximately 1 degree of retardation 

per 7.4 μm of thickness) 
5
. The amount of the phase-shift (retardation) is calculated pixel-

wise and displayed in a map of the scanned area. 

  

                                            Birefringence = |ne – no|                                                  (1) 
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where ne is refractive index of extraordinary and no is refractive index of ordinary ray. 

  It has been shown that the RNFL measurement by SLP needs to be compensated 

due to the fact that the retardation can be caused by other factors such as cornea and lens 

58
. Older versions of SLP have employed a fixed compensation where both axis and 

magnitude reflect the median values of the general population. In the more advanced 

version of SLP such as GDx-VCC, however, customized anterior segment birefringence 

compensation (ASBC) is employed, where an initial scan of the patient‟s macula is 

adopted to perform patient-specific compensation. This enhances the discriminating 

power for glaucoma detection. Consequently, GDx-VCC is shown to better aid in 

detecting the glaucomatous defect. Figure 2-2 shows an example of scanning laser 

polarimeter. 

 

 
 

Figure 2-2.  Scanning Laser Polarimeter 
63

 

 

  Figure 2-3 (a) shows how a 1D TSNIT RNFL data is obtained along a circular 

path in the retina from GDx-VCC. Then, 64 RNFL thickness segments within an eight-
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pixel-wide ring are made. These segments are grouped into the 64 sectors to yield a 1D 

TSNIT RNFL data in the 360° around the optic disk as shown in Fig. 2-3 (b). 

 

 
                                          (a)                                               (b) 

 

Figure 2-3. (a) TSNIT RNFL measurement around the optic disc using GDx-VCC (b) 

The resulting 1D TSNIT RNFL with 64 sectors of thickness values in the 360° 

  

2.2.2. Optical Coherence Tomography (OCT) 

  Optical coherence tomography (OCT) is a noninvasive imaging technique that 

obtains cross-sectional images from a series of amplitude modulation scans (A-scans) 
64

. 

It is based on the interferometry which achieves higher resolution, deeper penetration 

depth and better quality images of the RNFL. First developed for the ophthalmic 

application, OCT has now been used for a wide variety of other medical applications 

such as cardiology, dermatology and neurology 
65

. There are two basic approaches of 

using OCT: time-domain OCT (TD-OCT) and Fourier-domain OCT (FD-OCT). TD-

OCT is relatively slower than FD-OCT due to the rate of the mechanical moving part that 

performs the A-scans. On the contrary, FD-OCT has the fixed reference arm and thus 

calculates the depth scan immediately using an inverse Fourier-transform from the 
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acquired data 
66

. In this work, since we only utilize the dataset acquired by StratusOCT, 

which is based on TD-OCT, FD-OCT is not covered. 

 

2.2.2.1. Time-Domain OCT (TD-OCT) 

  In determining ocular images, TD-OCT splits low-coherence infrared light into 

two separate light beams: one that travels the reference path and the other that hits the 

RNFL. The interferometry combines the split beams together in a way that they may 

result in either constructive or destructive interference between them.  Since the light 

beam that reflects off the RNFL and the light beam that travels the reference path cause 

the time delay between them, this time delay is detected in the time-domain detector in 

the form of interference fringes. An example of a TD-OCT interferogram is shown in Fig. 

2-4. Note that the light beams in phase are in constructive interference, while the light 

beams out of phase are in destructive interference. 

 

 

 
 

Figure 2-4. TD-OCT interferogram 
67
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(a) 

     
(b)                                                              (c) 

 

Figure 2-5.  (a) The basic setup for TD-OCT (b) RNFL TSNIT measurement around the 

optic disc using TD-OCT (c) cross sectional RNFL TSNIT image using TD-OCT 
64

 

 

To get ocular images at different depths, TD-OCT varies the distance that the 

light beam travels the reference path by scanning an optical delay line. This process, 

known as path-length ranging, covers the interferometer with a range of light from 

varying depths and thus, builds a single line of the image of the sample (A-scan). This 

light with the receiving optics then moves to another spot to be imaged off the RNFL and 

the process continues, finally combining the lines of the scan and capturing the desired 

image (B-scan). 
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  The light beams that TD-OCT adopts should be spatially coherent and directional. 

Also, they should be temporally incoherent, having many different wavelengths which 

provide higher resolution. In Fig. 2-5, the basic setup for a TD-OCT, a representative 

TSNIT RNFL data using TD-OCT, and the cross-sectional image of the RNFL using TD-

OCT are shown. 

 

2.3. Functional Analysis: Visual Field (VF) Test 

  A visual field (VF) is the area of the space visible by the central and peripheral 

vision of the immobile eyes 
68

. An average VF is 60° upward, 75° downward, 60° 

nasally, and 90° temporally 
69

. The sensitivity of a VF is the highest centrally and it 

steadily falls as shown in the hill of vision by Traquair in Fig. 2-6. 

 

 
 

Figure 2-6.  The hill of vision by Traquair 
70

 

 

  The VF test is an important part of diagnosing and managing of glaucoma. The 

VF test measures the patients‟ visual sensitivity via evaluating the ability of detecting 

points of light centrally and peripherally. Since patients may not recognize the VF defects 
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until the symptoms or signs of peripheral vision loss are obvious, the VF test can help 

early detect such defects. There is a list of techniques for visual field test: confrontation 

visual field exam, Goldmann field exam and automated perimetry 
71

. However, 

automated perimetry devices such as Humphrey Field Analyzer (HFA) and Octopus 

perimeter have replaced manual perimetry such as Goldmann field exam. Fig. 2-7 shows 

a HFA and an Octopus perimeter 
72-73

.  

  Automated static perimetry (ASP), also called standard automated perimetry 

(SAP), uses stationary white light stimuli at fixed locations onto a white background, 

gradually increasing in their intensity or size until the stimuli are perceived. SAP can be 

performed in an objective and standardized fashion with minimal bias using 

pseudorandom light stimulus presentation. With SAP, the reliability and speed of the VF 

test are increased 
74-75

. The visibility at the fixed locations is measured using the 

threshold values of various intensities. The test is done one eye at a time and the patient is 

to response to light sensation. The luminance of the test targets is measured in apostilbs, 

where an apostilb (asb) is an absolute unit of luminance, being the luminance of a 

perfectly diffusing surface emitting light at the rate of π 
−1

 (i.e., 0.3183) candela/m
2
 or 0.1 

mililambert. Then, the threshold values are recorded in the decibel (dB) scale, where zero 

dB is denoted as the brightest stimulus while the greatest dB is the dimmest stimulus. 
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                                                 (a)                                                         (b)  

 

Figure 2-7. (a) Humphrey Field Analyzer (HFA) 
71

 (b) Octopus perimeter 
73

 

 

  If the initial light stimulus is not perceived, then the intensity of light stimulus is 

increased 4 dB each time until it can be seen. Next, the intensity is decreased 4 dB each 

time until it cannot be seen. Then, it is increased again 2 dB at a time until it can be seen 

again. This process is called a 4-2 staircase bracketing strategy. The threshold values are 

estimated as the intensities of the last seen stimuli (Humphrey) or the average values of 

the last seen and unseen stimuli (Octopus). Hence, these threshold values are used to 

determine the visual sensitivity of any given location. Normally, the patients with good 

peripheral vision detect very dim light stimuli. Hence, the dimmer the stimuli, the higher 

the threshold values are obtained and the higher the number on the VF map, then, the 

better the patient has performed on the test. 

  For the reliable VF test, the number of fixation losses and false positive and 

negative errors should be small 
75

. Fixation losses are the number of times a patient is 

detected to be looking at the wrong spot. During the test, light stimuli are shown to the 

patient‟s blind spot, and if the patient responds to these stimuli, it is regarded as a fixation 

loss. To be considered a reliable test, fixation losses should be less than 15%. Another 
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indicator for reliability is the number of false positive or false negative errors. If the 

patient responds to the noise of the machine and not to the actual light stimulus, it is 

registered as a false positive error. In contrast, false negative errors are recorded when the 

patient could not see a bright stimulus in the same spot they previously detected a dim 

stimulus. For a reliable test, these false positive and negative should be less than 15%. 

 

2.3.1. Octopus Perimeter 

  Octopus 101 perimeter has been extensively used in everyday practice, clinical 

studies and research work 
76

. It is a separate unit remotely controlled by a computer 

hardware and via the PeriTrend software. All Octopus 101 test results can be exported to 

the latest EyeSuite Perimetry software and evaluated further. Octopus 101 perimeter 

features a spherical cupola with direct projection for 90° full field static and kinetic 

perimetry. For eye monitoring, infrared sensitive eye camera is used. There are 14 

diagnostic examination programs and the test strategies include normal 4-2-1dB, low 

vision, dynamic and qualitative 3-zone.  

 

2.4. Feature Extraction Techniques 

  Features are individual measurable heuristic properties of the phenomenon of 

interest being observed 
77

. Feature extraction is the key to any pattern recognition 

method, particularly for the purpose of classification. Since the 1D TSNIT RNFL data 

show unique double-hump patterns, their shape as features in average (e.g., TSNIT 

Average, Superior Average and Inferior Average) have been used for classifying 

glaucomatous from normal eyes. At the same time, such double-hump pattern data have 
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been passed through feature-based techniques (e.g., FFA, WFA and FA), which 

parameterize the unique shape of the 1D TSNIT RNFL data, for better classification 

performance. In these procedures, all the double-hump pattern data have been treated as 

1D data. We review the background of the existing feature extraction techniques such as 

FFA and WFA along with the newer technique, FA, below. 

 

2.4.1. Fast-Fourier Analysis (FFA) 

  From a statistical point of view, a signal is regarded as an array of intensity values 

with locally varying statistics 
77

. Fast-Fourier analysis (FFA) breaks down this 

statistically varying signal into the elements of sinusoids of different frequencies so that it 

may transform the given signal from a time domain to a frequency domain 
78

. This 

concept of the FFA heavily depends on the type of a signal. If a signal does not change 

much over time, that is, a stationary signal, transforming the signal from a time domain to 

a frequency domain using the FFA does not make any significant difference. However, 

most interesting signals contain numerous non-stationary or transitory characteristics 

such as drift, trends, abrupt changes, discontinuities, and beginnings and ends of events. 

Hence, the FFA is useful where the valuable information of the signal‟s frequency is 

intended to be obtained and utilized.  

  Mathematically, the process of the FFA is represented by the Fourier transform 
78

. 

It is the sum over all time of a signal, multiplied by a complex exponential. In actual 

computer simulation, the Fourier transform is done in a discrete manner, yielding the 

discrete Fourier coefficients. Hence, the discrete Fourier transform (DFT) is utilized by 

the equation below: 
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where F(ω) are the discrete Fourier coefficients, M is the total number of input points and 

f(t) is the input signal. 

  For the faster calculation of the discrete Fourier transform, the fast Fourier 

transform (FFT) is implemented and thus achieves the same results more quickly. Using 

these fast Fourier coefficients, the fast-Fourier analysis (FFA) is done. Since the FFA 

better captures discontinuities and abrupt changes in a non-stationary signal and thus 

shows more robustness than the methods that only emphasize the average values, the 

FFA is suited for analyzing the 1D TSNIT RNFL data where abrupt changes and 

discontinuities are expected to be present.  

 

2.4.2. Wavelet-Fourier Analysis (WFA) 

  While the FFA is a good candidate for analyzing a non-stationary signal such as 

the 1D TSNIT RNFL data, it has a few drawbacks. In transforming to the frequency 

domain in FFA, non-periodic local information is lost. The wavelet analysis can 

overcome such a drawback by revealing the hidden aspects such as breakdown points, 

discontinuities in higher derivatives, and self-similarity 
79

. The wavelet analysis analyzes 

a localized area of a larger signal using flexible wavelets. Comparing wavelets in the 

wavelet analysis with the sinusoidal waves of the FFA, it has been known that wavelets 

are more irregular and asymmetric with limited spatial duration 
80

. For many signals, the 

low-frequency content is the most important part, providing the signal with its identity. 
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The high-frequency content, on the other hand, imparts unique characteristics. These two 

processes constitute so called wavelet decomposition. In the wavelet analysis, a function 

is decomposed by wavelet ψ(x) and scaling function φ(x) given as,  
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where j0 is an arbitrary starting scale, the cj0(k)‟s are approximation coefficients and the 

dj(k)‟s are detail coefficients 
78, 81

. Like the way the FFA is represented by the Fourier 

transform, the wavelet analysis is represented by the wavelet transform. For a discrete 

function, the discrete wavelet transform (DWT) is used, using the DWT transform pair, 

shown below.  
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where Wφ(j0,k)‟s and Wψ(j,k)‟s in (4) to (5) correspond to the approximation coefficients 

and detail coefficients, respectively in the discrete domain and M is the total number of 

input points.  

  There have been attempts to combine the FFA with the wavelet analysis known as 

the wavelet-Fourier analysis (WFA) for obtaining better performance 
23

. Firstly, the 

DWT is applied to the 1D TSNIT RNFL data yielding the approximation and the detail 

coefficients, where the former contains down-sampled spatial information, and the latter 

contains detailed information. The DWT is then applied to the approximation coefficients 

and the results of this second-level transformation are retained. The detail coefficients are 

further processed using FFT to obtain more useful high frequency information. This 

process is repeated based on the pre-determined scales so as to maximize the 

performance. In this process, only the amplitude values are retained. 

   

2.4.3. Fractal Analysis (FA) 

  It has been known that many signals and images with smooth curves and surfaces 

can be analyzed through classical geometries such as Euclidean geometry where shape, 

size and relative position are addressed. However, there are numerous natural phenomena 

which cannot be described using the classical geometries due to their complexity and 

irregularity. They are better represented via a different geometrical representation such as 

fractal analysis (FA) 
82

. 

  A fractal is a scale-invariant entity with embedded irregularity and complexity, 

which can be found everywhere in nature such as clouds, mountain ranges, coastlines, 

vegetables, snowflakes, and bacteria 
83-85

. A fractal is a rough or fragmented geometric 
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object with an infinite nesting of structure at all scales. Each fractal is a reduced-size 

copy of the whole, which accounts for the localized variation. A fractal typically has 

unique properties, such as self-similarity, chaos, and non-integer fractal dimension (FD). 

Self-similarity implies that any portion of the fractal object appears identical to the whole 

object. Chaos symbolizes the unpredictability of the fractal object. Non-integer fractal 

dimension (FD) represents the quantitative measurement of the fractal object.  

  A topological dimension is known to characterize an object of interest with 

different units of measurements. However, a topological dimension may not fully 

describe the morphology of a complex object such as a fractal object. For example, a 

straight line has a topological dimension of one in Euclidean geometry (e.g., 1D, 2D and 

3D), but a complex line such as a coastal line has a topological dimension between one 

and two, which is between a straight line and a plane. The FA well describes such an 

object and has shown much success in 1D signal and 2D image processing 
85-86

. Even 

when the considered 1D or 2D data are not strictly fractal object, the FA can be still 

applied for the embedded irregularity and complexity in such data can be utilized as 

useful information. For the FA, FD is measured, which is the approximation of Hausdorff 

dimension. There are several methods in estimating the FD such as box-counting (BC) 

method and multi-fractional Brownian motion (mBm) method. We briefly discuss such 

methods below.   

    

2.4.3.1. FD Estimation Using BC Method   

  The first technique involves obtaining the FD features using a BC method. Using 

the pseudo 2D image of the 1D TSNIT RNFL data, a BC method calculates the FD 
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features for each size of the boxes by dividing 2D image into the boxes of predetermined 

size, “r,” and counting the number of the occupied boxes, “N,” needed to capture the 

signal values. The resulting FD features are the ratios between the logarithmic values of 

N and 1/r. The expression of pseudo 2-dimension FA is as follows: 
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  Since the 1D TSINT RNFL data have been extracted from the 2D TSNIT RNFL 

thickness profiles, it may be reasonable to convert such a 1D data into a pseudo 2D image 

using y-coordinate as the index. Such a 2D pseudo image representation of 1D TSINT 

RNFL data is then amenable to a BC method without losing any generality of the 1D 

TSNIT RNFL thickness measurement values. 

 

2.4.3.2. FD Estimation Using mBm Method 

  A fractional Brownian motion (fBm) model is a non-stationary and zero-mean 

Gaussian process and has been commonly used for medical imaging applications such as 

brain tumor segmentation and prediction 
31

. This fBm model is known to well 

characterize a random phenomenon and is based on self-affine fractal Brownian functions 

(fBfs). Hence, an fBm model is defined as follows: 
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where H is the Holder exponent, s and t are different observation times of the process, 

and BH is a generalization of Brownian motion. The Holder exponent is a measure of the 

roughness of the object of interest. Then, the FD of an fBm model is defined as follows: 

 

                                                        
HnFD fBm  1

.                                                    (9)  

   

where n is Euclidean dimension of the space.  

  Although an fBm model has proved to be useful in quantifying the random 

phenomenon such as brain tumor texture, it appears to be homogeneous or mono-fractal. 

It has been reported that there exists multi-fractal structure in real world entities such as 

tumor regions in MRI 
29, 86-88

. Hence, multi-fractional Brownian motion (mBm) model 

may be more suitable for characterizing the RNFL data. The mBm is defined as, 

 

                                                         x(at) =a 
H(t) 

x(t).                                                      (10) 

 

where H(t) is the time varying Holder exponent, x(t) is a random process and a is the 

scaling factor. After a mathematical derivation, the expectation of the squared-magnitude 

of the wavelet transform Wx of x(t) is,                                                                   
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                                log (E [|Wx (a, t)|
2
]) = (2H(t) + 1) log a + C.                                   (11) 

 

where C is a constant. Then, H(t) can be approximated as follows : 
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Finally, we compute the FD using Eq. (9) as follows: 

 

                                                     
)(1 tHnFDmBm 

.                                               (13) 

 

2.5. Feature Selection  

  After the original data are normalized and passed through the feature extraction 

techniques for obtaining the better representative features of the original data, the next 

step involves feature selection 
89

. Generally speaking, selecting more features out of all 

available features results in better classification performance. However, selecting more 

features means more computational burden and some features are redundant or irrelevant 

on our specific purposes. Hence, care must be given to this step of feature selection for 

the best performance. 
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  Principal component analysis (PCA) has been commonly used as a feature 

selection method in the machine learning area for its feature compression capability. 

More details of feature selection will be discussed below. 

 

2.5.1. Principal Component Analysis (PCA) 

  Principal component analysis (PCA) projects a given feature dataset X = [x1, x2, 

…, xn]
T
 with n variables into a new feature set Y = [y1, y2, …, ym]

T
 with m variables so 

that most of the variability of the dataset is contained within the first few combinations 
90

. 

It essentially transforms a given feature dataset with correlated variables into a smaller 

sized feature dataset with uncorrelated variables, which are called the principal 

components (PCs), such that m < n. The first principal component (PC) is the projection 

of the data points in the direction of the line giving the best orthogonal regression fit to 

the data points. Since the best fit to this type should pass through the mean, the data 

points are centered on the mean by subtracting the mean from the data points. The first 

principal component (PC) is hence the projection of the data points into the direction with 

maximal variance of the projected points. The first principal component (PC) corresponds 

to the maximum variability of the original feature set and the second PC corresponds to 

the second highest variability of the set and so forth. The PCA transformation is then 

given as: 

 

                                             Y = W(X – mx) or (X– mx) = AY                                       (14) 
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where mx is the mean of X, W is a unmixing matrix and A is a mixing matrix.  

  The first step in PCA is to find the sample covariance matrix Cx for the combined 

samples of both classes (in the present study, glaucomatous and normal eyes). Then, the 

eigenvalues and the corresponding eigenvectors of the matrix are computed by using the 

equation given as: 

 

                                                        (Cx– λI )ai  = 0                                                    (15) 

 

where Cx is a covariance matrix, λ is an eigenvalue and ai is a mixing vector. 

  The combination of the feature points that has the maximum variability is 

obtained in the direction of the first principal component and this direction is that of the 

eigenvector corresponding to the highest eigenvalues. Hence, the eigenvalues are ordered 

from the highest to the lowest and the ordered eigenvectors represent the principal 

component (PC) directions. After the covariance matrix is calculated, the transformation 

matrix is then extracted from this matrix by taking only the selected number of 

eigenvectors according to such number of eigenvalues (feature selection). Finally, the 

new transformation matrix is then used to derive the new compressed feature vector set.  

 

2.5.2. Fisher’s Linear Discriminant Analysis (LDA) 

  After feature selection is performed, the final classification is performed. For two-

class classification, the classifier is generated by using two subsets–the training and the 

testing set. K-fold cross validation and Fisher‟s linear discriminant analysis (LDA) have 
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been commonly used for this task. Using the training set, the classifier is formulated, and 

the testing set is used to assess the stability of the classifier (k different times). Fisher‟s 

LDA classifier is used to maximize the ratio of the between-class scatter to the within-

class scatter in lower dimensional space than input feature dataset. This ratio is the 

foundation of the classifier that optimally separates two pre-determined categories (in the 

present study: glaucomatous and normal eyes). The first step in Fisher‟s LDA is to find 

three mean values: the mean of glaucomatous group, the mean of normal eyes group and 

the mean of the combined group. These mean values are used to find the between-group 

and within-group variability. If we define each group‟s mean values as vectors, the 

corresponding mean vectors can be given as: 
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where ni is the corresponding size of the groups. 

Also, the overall mean vector will be given as: 
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Next, we obtain the scatter matrices. The between-group scatter matrix is given as: 
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The within-group scatter matrix is given as: 
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Fisher‟s LDA finds a coefficient vector q that maximize the ratio of the between-group 

scatter matrix to the within-group scatter matrix, given as: 
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and 

                                                              SB q = λSW q                                                      (21) 

 

where λ is an eigenvalue vector. 

Then we obtain the eigenvectors by solving  
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                                                        (SB – λSW ) q  = 0                                                    (22) 

 

and using a single threshold (linear discriminant), the input data can be categorized into 

two groups. 

 

2.6. Multi-class Classification Using Support Vector Machine (SVM) 

2.6.1. Basic SVM  

  Support vector machine (SVM) has been used in classification problems with the 

application to the pattern recognition and machine learning 
39

. SVM works by finding the 

hyperplane that separates the two classes, while providing the widest margin. The SVM 

assumes a training dataset D = {xi , yi}i=1,2 where yi
{-1,1}. This dataset can be 

separated by a hyperplane, w
T
·x + b = 0 with a small error. The distance between the 

hyperplane and support vector for each group is the reciprocal of the norm of the weight, 

such as, 1/||w|| and the distance between two groups is its double, that is, 2/||w||. In order 

to maximize the margin, we need to minimize ||w|| with the constraint condition given as,  

 

                                                            y | w
T
·x + b | ≥ 1,                                                 (23) 

 

where w is a normal vector that contains weight parameters and b is a constant. 

Then, it is an optimization problem and using the Lagrangian with a loose variable and a 

penalty factor α, it can be described as:  
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  By setting the derivative of the Lagrangian to be zero, the optimization problem 

can be written in terms of αi as shown below. 
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where x is an input dataset, y is an output dataset, α is a penalty factor and W is a weight 

parameter vector. The unknown parameter vector w can be recovered by  
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  For testing, the testing dataset z is classified as class +1 if the decision function, f, 

is greater than 0, and as class -1 if f is less than 0. 
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where x is an input dataset, y is an output dataset, z is a testing dataset, α is a penalty 

factor and w is a weight parameter vector. 

 

2.6.2. Kernel Function  

  SVM is a linear classifier which cannot deal with nonlinearly separable data. One 

solution to this issue is to map the nonlinearly separable data into a high dimensional 

feature space so that a linear classifier can be applied. For our multi-class classification, 

the data distribution is normally perceived as nonlinear. Hence, we propose to use a 

kernel based SVM for multi-class classification in this work. 

  Equation (26) shows that the data points appear as inner product. Consequently, 

as long as the inner product in the feature space can be calculated, the mapping does not 

need to be explicitly addressed. Many common geometric operations such as angles and 

distances can be expressed by inner products. According to Mercer‟s theorem, if a kernel 

function, K, is semi-positive definite and symmetric, then there exists mapping with the 

inner product given as, 

 

                                                     K(xi, xj) = ‹Λ (xi), Λ (xj) ›                                          (28) 

 

where x is an input dataset and Λ  is an implicit mapping of the input dataset into a high-

dimensional feature space.  
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  It is known that the dimensionality of the kernel-induced feature space is not 

necessarily important. With the kernel function shown above, Eq. (25) can be rewritten 

by   
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where x is an input dataset, y is an output dataset, α is a penalty factor, K is a kernel 

function and W is a weight parameter vector. 

  In addition, the set of kernels is closed under some operations such as addition 

and scaling. It is known that any complex kernel can be made from simple ones by Eq. 

(28), which is called modularity. In this work, we use the Gaussian kernel, which is a 

form of radial basis function kernel.  

 

                                                   K(xi, xj) = exp(-||xi-xj||
2
/(2σ

2
)).                                      (30)                                 

 

where K is a kernel function and σ is a tuning parameter. 

  In this Gaussian kernel function, the tuning parameter, σ, plays an important role 

in the performance of the kernel. If σ is overestimated, the exponential will behave as a 

linear function and thus the kernel function will lose its nonlinear power. If σ is 

underestimated, the kernel function will lack regularization and the decision boundary 

will be highly sensitive to noise in training data.  
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2.6.3.  Multi-class SVM 

  A multi-class SVM classifier can be obtained by training several classifiers and 

combining their results 
40

. There are several strategies for combining SVM classifiers. 

Out of such strategies, two common methods are “one-against-one (OAO)” and “one-

against-all (OAA)” 
40

. The OAO involves training one classifier for each class to 

discriminate that class from the other classes. Out of possible pairs of N classes, each 

classifier defines a discrimination function which assumes positive values when the cases 

belong to the class and otherwise, negative values. These values are then compared and 

the output of the combined classifier is the matching index for which the value of the 

discriminating function is the largest. The most commonly used discrimination function 

is the signed distance between the case to classify and the hyperplane. In OAO method, 

the required number of classifiers is N(N-1)/2. In the OAA method, however, only N two-

class classifiers are needed, since the N class problem is broken down to a series of two-

class problems. Hence, in this work, we use the OAA method which requires one less 

classifier. At each class, its classifier is trained on the whole training dataset so as to 

classify the members of class against the rest. Hence, the j
th

 classifier or the decision 

function, g, solves the following problem, similar to the two-class case: 
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where the training data x
j
 are mapped into a higher dimensional space by a kernel 

function Λ , w is a weight parameter vector, C is a penalty parameter and 
j

i are slack 

variables. 

  The role of the penalty term in (31), 

j

ij
C 

, is to reduce the training errors. After 

solving (29), there are k decision functions and the test dataset is labeled as the j
th

 class 

with the largest value of decision function, which shows that the classifier with highest 

confidence score is estimated as the labeled class. Hence, the expression for estimating 

the class using multi-class SVM is given as,  
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where x
j
 are the training dataset,  Λ is a kernel function, w is a weight parameter vector 

and b is a constant. 

 

2.7. Feature-based Fusion 

  Feature-based fusion has been adopted as a new technique that achieves 

improvement in the classification performance 
44-45

. In this work, we mainly focus on 

discovering the relationship between the structural and functional data so as to obtain the 

best possible selective feature fusion. Further, we explore AdaBoost and AdaBoostSVM 

for classifier fusion. 
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2.7.1. AdaBoost  

  Considering the heterogeneous nature of the features in glaucoma, boosting is 

expected to improve classification performance. In boosting, each component classifier is 

successively added and trained on a subset of the training data that is “most informative,” 

given the current set of component classifiers already added to the ensemble of the 

classifiers. After the training procedure is finished, prediction on the new testing data is 

made based on the voting of the component classifiers, which are weak learners.  

  Among various types of boosting, adaptive boosting (AdaBoost) has been 

commonly used, which we will utilize. AdaBoost keeps adding the weak learners until 

the pre-determined low training error has been achieved. During the training of the 

classifiers, a weight is assigned to each sample that determines its probability of being 

selected in the training set for the next component classifier. If a training sample is 

correctly classified by the current ensemble of the classifiers, its probability of being 

selected in the training set of the subsequent weak learner is reduced. However, if the 

training sample is not correctly classified, its weight is increased. The new distribution of 

the weight is used to select the training set for the next iteration of training a new 

component classifier. Thus, AdaBoost selectively focuses on the informative samples. 

Predictions of the new testing data are made based on the weighted votes of the weak 

learners. The classifier weights are calculated based on their individual performance on 

classification.  
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2.7.2. AdaBoost Support Vector Machine (SVM)  

  AdaBoostSVM is a relatively new method of enhancing classification 

performance, which combines AdaBoost and SVM. This method gives promising results 

with other classifier fusion methods. We will explore the possibility of developing a new 

algorithm for this approach.  
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3. Identifying Glaucoma Using Fractal Features 

3.1. Introduction 

  The glaucomatous damage to the retinal nerve fiber layer (RNFL) often precedes 

visual field (VF) defect. Therefore, assessing the RNFL using imaging technologies such 

as SLP and OCT can provide clinically more useful information than VF test in 

identifying glaucoma and monitoring glaucomatous changes. However, detecting early 

stage of glaucoma using only SLP and OCT may not be sufficient due to considerable 

inter-individual variation in the RNFL, caused by different physiological aging process 

and the heterogeneous nature of the glaucoma 
4
. Feature-based techniques such as FFA 

and WFA have shown superior performance to the standard machine classifiers in 

identifying glaucoma owing to their ability of extracting the better features from the 1D 

TSNIT RNFL data.  

  Recently, fractal-based techniques have demonstrated considerable potential in 

medical imaging applications such as brain tumor segmentation using brain multimodal 

MRI. The key element of such fractal-based techniques is determining fractal dimensions 

(FDs) which well characterize irregularity and randomness embedded in natural 

phenomena such as the cancerous deformation in biological tissues. Hence, it is 

reasonable to apply fractal-based techniques to 1D TSNIT RNFL data wherein 

irregularity and local randomness are expected to be present. Consequently, we exploit 

the fractal-based techniques for identifying early stage of glaucoma.  

  In this work, we apply our novel fractal-based techniques on both SLP (GDx-

VCC) and OCT (StratusOCT) data. For SLP, 1D TSNIT RNFL data has been obtained 

via GDx-VCC for randomly selected patients (227 study participants: 116 glaucoma and 
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111 ocular normal patients). Then, a mono-fractal BC method is utilized, which takes 

pseudo 2D images from 1D TSNIT RNFL data. For OCT, a multi-fractional Brownian 

motion (mBm) method is used, which incorporates both fractal and wavelet analyses, to 

analyze the dataset obtained from StratusOCT (136 study participants: 63 glaucoma and 

73 ocular normal eyes).  

  The rest of the chapter is organized as follows. In section 3.2, the detail methods 

of our novel fractal-based techniques for identifying glaucoma using SLP and OCT data 

are provided. Section 3.3 presents the experimental results, performance evaluation of our 

novel fractal-based techniques and relevant discussions. Finally, conclusion is given in 

section 3.4. 

  

3.2. Methods 

  Figure 3-1 shows the flowcharts of our fractal-based techniques for SLP and OCT 

data. In Fig. 3-1, the first step for both SLP and OCT data involves converting 1D TSNIT 

RNFL data into pseudo 2D images. We discuss pseudo 2D image generation later. A 

mono-fractal BC method is applied next on SLP data while a multi-fractal mBm method 

as well as a BC method are applied on OCT data respectively. 
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(a)                                                                  (b) 

 

Figure 3-1. The flowchart of the proposed fractal-based techniques for (a) SLP (GDx-

VCC) data (b) OCT (StratusOCT) data 

 

  The resulting FD features are then normalized and are further processed by using 

PCA for data reduction. Finally, Fisher‟s LDA classifier is used for classification of the 

reduced dimensionality data. A 10-fold cross validation is also used where 90% of the 

data are selected for training and the remaining 10% is applied for testing. For SLP data, 
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the sensitivity, specificity and AUROC are calculated and compared with those of FFA 

and WFA to identify glaucoma from ocular normal individuals. For OCT data, the same 

metrics as above are also calculated along with those of standard machine output of 

Inferior Average, Superior Average and Average RNFL thickness. Comparison of 

AUROC was performed using the DeLong et al. technique 
91

. 

 

3.2.1. Acquiring 1D TSNIT RNFL Data 

  Figure 3-2 (a) shows the RNFL thickness measurement obtained along a circular 

path in the retina from a scanning laser polarimeter (GDx-VCC). The obtained RNFL 

thickness measurement are grouped into 64 sectors to yield a 1D TSNIT RNFL data of 64 

points in the 360° around the optic disk as shown in Fig. 3-2 (b).  

  For SLP data, the dataset includes 116 glaucomatous and 111 ocular normal 

subjects (85 males and 142 female), randomly selected for only one eye of each subject. 

The mean age of glaucomatous and ocular normal subjects was 57.9 and 56.1 years 

respectively. The groups are matched for age and the difference in age between the ocular 

normal subjects and glaucoma patients was not significant (Independent samples t-test t = 

-1.08, p = 0.28).  

  For OCT data, 1D TSNIT RNFL data were obtained from 136 participants who 

underwent a full ophthalmological evaluation and were labeled as glaucomatous or ocular 

normal on the basis of visual field (VF) test. The VF tests were performed using a 

standard automated perimetry (SAP) (either a central 30-2 or a 24-2 threshold test and 

size III white stimulus) with Swedish Interactive Threshold Algorithm (SITA Standard). 
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Participants were under the care of glaucoma specialists. The VF data were classified as 

glaucomatous using Anderson and Patella criteria 
92

. 

 

 
 

(a)                                             (b) 

 

Figure 3-2. (a) TSNIT RNFL measurement around the optic disc using a scanning laser 

polarimeter (b) resulting 1D TSNIT RNFL data composed of 64 sectors of thickness 

   

  The glaucomatous VF data met at least 2 of the 3 criteria: (1) Three or more non-

edge points on the pattern deviation plot having a probability of less than 5% of the 

normal population and at least one of those points with a probability of less than 1%, (2) 

a PSD value less than that of 5% of normal reliable fields, and (3) a Glaucoma Hemifield 

Test (GHT) „„outside normal limits.‟‟ The ocular normal eyes had to have reliable and 

normal VF data (absence of all 3 of Anderson and Patella criteria 
92

. Reliability criteria 

for automated perimetry were: fixation losses < 20% and false positives and false 

negatives < 33%. The VF tests were repeated and defects confirmed within 2 weeks. The 

ocular normal subjects had the normal VF data that were repeated only if the first VF was 
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unreliable. The severity of glaucoma was analyzed by staging the VF data using the 

criteria of Hodapp et al. 
93

. All glaucomatous individuals included were the „„mild‟‟ 

stage. Briefly, the mean deviation (MD) value was no worse than -6 dB and the pattern 

deviation plot had (1) ≤18 points (25%) depressed below the 5% probability, (2) ≤10 

points depressed below 1% probability, and (3) no points in the central 5° with sensitivity 

below 15 dB. 

  The 1D TSNIT RNFL data utilized in this study were obtained using the 

StratusOCT . The RNFL thickness values were obtained from dilated eyes (1% 

tropicamide) using the fast RNFL protocol (256 A-scans) of StratusOCT. Feature-based 

techniques were performed on the 1D TSNIT RNFL data of the mean image from 1 eye 

(selected at random) of each individual. The mean images were created from 3 images 

(obtained along a ring 3.46 mm in diameter and 20-mm wide) and had a quality score of 

8 (on a scale of 0 to 10). The OCT software calculates the average thickness, overall (i.e., 

360°), and quadrants (superior, inferior, nasal, and temporal, each 90°). There are no 

classifiers output by StratusOCT but prior reports have indicated that the output 

measures, Average Thickness (mean over the 360° TSNIT curve) or Inferior Average 

(inferior quadrant average thickness, i.e., 226 to 315°) are best at discriminating 

glaucoma eyes from healthy individuals 
8,10-20

. In this study we used Inferior Average, 

Average thickness and Superior Average and compared it to various fractal-based 

techniques. 
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3.2.2. Generating Pseudo 2D Image from 1D TSNIT RNFL Data 

  The acquired 1D TSNIT RNFL data is usually analyzed along with other 

information using the standard machine classifier known as the Nerve Fiber Indicator 

(NFI). However, in the present work, this 1D TSNIT RNFL data is converted into pseudo 

2D image format. The detailed algorithm for such pseudo 2D image generation technique 

from a 1D TSNIT RNFL data is shown in Fig. 3-3. For each row vector of 1D TSNIT 

RNFL data, its maximum value (m) is calculated and rounded into the closest integer. 

Then, a 2D matrix is formed using the integers as the x-values and corresponding indices 

as the y-value. For the final pseudo 2D image, the resulting matrix is flipped and plotted.  

 

Algorithm 1 

for each 1D TSNIT RNFL data vector set 

            Calculate maximum value (m) of the vector set 

            Obtain a null (m × m) matrix array a(i,j) 

            for each value of data vector 

                       Round the value to the closest integer 

                       Populate matrix a(i,j) using data vector as y-values and  

                       corresponding index as x-value 

           Flip the matrix a(i,j) 

Save the resulting pseudo 2D image of 1D TSNIT RNFL data vector  

  

Figure 3-3. Pseudo code for pseudo 2D image generation 
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  Figure 3-4 (a) shows an example of the 64-point 1D TSNIT RNFL data obtained 

by GDx-VCC and Fig. 3-4 (b) shows an example of pseudo 2D image converted from the 

obtained 1D TSNIT RNFL data for a patient. Note in Fig. 3-4 (b), the pseudo 2D image is 

obtained by plotting each data point as the y-axis value with the corresponding index as 

the x-axis value. This pseudo 2D representation is used to compute FD using a box-

counting (BC) method as discussed below. The pseudo 2D image still characterizes 1D 

TSNIT RNFL data while retaining its fractal elements. 

 

   
(a)                                             (b) 

 

Figure 3-4. (a) Plot of 1D TSNIT RNFL data (b) corresponding pseudo 2D image 

 

3.2.3. Generating Fractal-based Features Using FD 

  Using the pseudo 2D image of a 1D TSNIT RNFL data, fractal analysis (FA) is 

performed to calculate the fractal dimensions (FDs) for each size of the boxes. The 

detailed algorithm to compute the FDs using the BC method is shown in Fig. 3-5. The 

pseudo 2D image is divided into boxes of predetermined size, “r.” Then, for each box 

size of r, the number of the boxes needed to capture the signal values, “N,” is counted and 
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the magnitude factor is calculated, which is the reciprocal value of r. The resulting FDs 

are the ratios between the logarithmic values of N and 1/r.  

 

Algorithm 2 

for each pseudo 2D image 

           Divide the pseudo 2D image into boxes of size r × r 

           for each box of size r  

                      Count the occupied boxes: N 

                      Calculate the magnitude factor (1/r) 

           FD = log(the number of occupied boxes)/log(1/r)           

 

Figure 3-5. Pseudo code for the box counting (BC) method 

 

  Figure 3-6 shows an example of the BC method for calculating the FDs. Note in 

Fig 3-6. (a)(b)(c) that the number of occupied boxes, N, is varied with the box size, r. The 

resulting FDs are piece-wise linear and the slopes between each box-size have been 

extracted as the new features. In Fig. 3-7 (a)(b), we show the examples of two different 

patients‟ FD features. Each plot shows the new fractal-based features for two example 

patients from glaucoma and ocular normal patient group, respectively. For both plots, the 

x-axis is the size of box for fractal computation and the y-axis is the FD at each box size. 
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(a)                                           (b)                                          (c) 

 

Figure 3-6. The box-counting (BC) method to estimate FD (a) box size (pixels): r = 6; 

the number of occupied boxes: N = 14 (b) r = 8; N = 23 (c) r = 4; N = 31 

 

 
                                          (a)                                                       (b) 

 

Figure 3-7. Two different patients‟ FD features based on pseudo 2D image 

representation of (a) glaucomatous (b) ocular normal patient 

 

3.2.4. Feature Selection Using PCA and Classification Using LDA Classifier 

  Once the FD features are extracted, the features need to be selected for effective 

handling. Principal component analysis (PCA) is used to select the FD features by 

reducing their dimension and keeping all the essential information contained in the 

features. By selecting the fractal-based features, the redundancy caused by 

interdependencies in the features is eliminated and statistical independence is maintained. 

The next step involves classifying the patient data into the two classes. We exploit a 

Fisher‟s LDA classifier for an easy and robust way for the classification. The role of the 

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

r, box size

- 
d
 l
n
 n

 /
 d

 l
n
 r

, 
lo

c
a
l 
d
im

e
n
s
io

n

2D box-count

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

r, box size

- 
d
 l
n
 n

 /
 d

 l
n
 r

, 
lo

c
a
l 
d
im

e
n
s
io

n

2D box-count



www.manaraa.com

                                                                                                                                                                                                                                                                      

56 

 

LDA classifier is to provide a criterion that optimally classifies a set of values into two 

categories (in the present study: glaucomatous eyes and ocular normal ones). The 

criterion of the LDA classifier is based on two distinct values. The resulting classification 

measure is obtained by using the shorter distance from the testing sets. To assure the 

external validity of the classifier using the LDA classifier, it must be tested on the testing 

data that are independent of the training data from which they were derived. To achieve 

this, the whole dataset is first randomly split into two independent subsets; one for 

training the LDA classifier and the other for testing. This is called a “leave-out” method. 

To provide even more robust validation procedure, a variation of 10-fold cross validation 

is used, as it is superior to a “leave-out” method and is especially advantageous when a 

very large sample size is not available. For this procedure, the majority of the patient data 

(in our study, 90%) are selected for the training data, and the classification is applied to 

the small test data consisting of the remaining data (10%). In the present work, we train 

the data set ten times for each tenth.  

 

3.3. Results and Discussions 

3.3.1. SLP Data 

  Figure 3-8 (a) shows the plot of raw 1D TSNIT RNFL data of the glaucomatous 

and ocular normal patients. As can be seen in Fig. 3-8 (a), there are considerable overlaps 

between the two patient groups. In Fig. 3-8 (b), the scatter plot of the mean thickness 

values and the variance between them is shown, which suggests that the classification is 

very difficult using only the mean thickness values. 

 



www.manaraa.com

                                                                                                                                                                                                                                                                      

57 

 

 
                                     (a)                                                                 (b) 

 

Figure 3-8. Plot of (a) raw data of glaucomatous (green) and ocular normal patients 

(blue) (b) Scatter plot using the mean and variance of each patient group 

 

  Figure 3-9 (a) shows the LDA distance measure plot for each patient samples. In 

Fig. 3-9 (a), it is obvious that the glaucomatous and ocular normal patients can be better 

differentiated using our new feature set obtained from the difference measures. To 

calculate these difference measures, the largest LDA values of each glaucomatous or 

ocular normal group are extracted. These LDA values are obtained based on the mean 

and variance from the first principal component of each group in the training phase. 

When a given testing patient‟s data is presented, the largest LDA value of the patient is 

calculated and subsequently its distance measure from each group‟s LDA value is 

measured, respectively. For our classification purpose, the distance measures from the 

ocular normal patient group have been assigned to be positive while those of 

glaucomatous patients have been assigned to be negative. Then, the shorter distance 

toward either group indicates the more likelihood toward that group and, thus, the 

unknown testing patient is labeled belonging to that specific group. Figure 3-9 (b) shows 

the scatter plot using the distance measures and the LDA values. In Fig. 3-9 (b), the 
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ocular normal patients and glaucomatous patients are separated in the vertical line of “0” 

and the typical LDA values for each patient group are around “+1” and “-1.” Figure 3-9 

(c) shows the relationship between AUROC and feature numbers. This relationship 

demonstrates that the more FD features are included, the better performance is achieved. 

Hence, all of the seven FD features are used to compute PCA and LDA, respectively. 

 

 
(a)                                                  (b) 

 
(c) 

 

Figure 3-9. (a) Plot of distance measures of healthy patients (square) and glaucoma 

patients (circle) (b) Scatter plot using the distance measure and LDA value of each 

patient group (c) AUROC vs. feature numbers 

 

  Figure 3-10 (a) shows the comparison of AUROC curves between fractal and a 

few other machine generated parameters such as NFI, TSNIT Average, Superior Average 
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and Inferior Average. The sensitivity and specificity plot in Fig. 3-10 (b) shows the 

improved detection capability of our fractal-based technique. 

 

 
(a)                                                                (b) 

 

Figure 3-10. The results of fractal-based technique using piecewise FD slopes as features 

(a) The comparison of AUROC (b) Truth table (AUROC: 0.97) 

 

Table 3-1. The comparison of sensitivity, specificity and AUROC among standard 

machine parameters and FA 
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  We summarize our results in Table 3-1. From the Table 3-1, we observe that the 

AUROC of the fractal analysis (FA) is higher than those of the standard machine 

classifiers obtained with the parameters output by GDx-VCC. Note the NFI had the 
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highest AUROC and is significantly different when compared to the TSNIT average and 

Superior Average but not Inferior Average (DeLong et al.‟s method, p = 0.002, 0.01 and 

0.2 respectively). Comparison to the FA shows that the AUROC of FA is greater than all 

standard machine parameters in identifying glaucomatous eyes (p < 0.0001 in all 

comparisons). 

 

3.3.2. OCT Data 

  Figures 3-11 shows the comparison of ROC curves for the fractal-based 

techniques. In Fig. 3-11 (a) the combined BC and mBm technique performs the best 

when compared to the BC technique and the mBm technique. Note in Fig. 3-11(a), the 

combined BC and mBm method performs the best among all three fractal-based 

techniques with corresponding AUROC of BC, mBm and the combined BC and mBm 

methods being 0.81, 0.87 and 0.89, respectively. Comparing the diagnostic accuracy of 

standard machine classifiers output, usually given as Superior Average, Inferior Average 

and Average thickness of the 1D TSNIT RNFL, note that the Inferior Average is the best 

at discriminating glaucoma from ocular normal individuals followed by Average 

thickness and Superior Average with the AUROC being 0.84, 0.76 and 0.70, respectively.  

  Comparison of the AUROC of the best fractal-based technique and the set of 

standard machine measures shows that the diagnostic accuracy of the combined BC and 

mBm method is significantly greater than the Average Thickness and Superior Average 

by 13% and 19% respectively (DeLong et al. p < 0.0001 and p = 0.001), whereas the 

difference in diagnostic accuracy of Inferior Average and the combined BC and mBm 



www.manaraa.com

                                                                                                                                                                                                                                                                      

61 

 

method was 5%, which was not statistically significant (DeLong et al. p = 0.058). The 

summary of results is shown in Table 3-2. 

 

 
(a)                                                                (b) 

 

Figure 3-11. ROC curves comparison of (a) BC, mBm and the combined BC and mBm 

(b) the combined BC and mBm, Inferior Ave., Superior Ave. and Ave. thickness 

 

  Comparison of the AUROC of the best fractal-based technique and the set of 

standard machine measures shows that the diagnostic accuracy of the combined BC and 

mBm method is significantly greater than the Average Thickness and Superior Average 

by 13% and 19% respectively (DeLong et al. p < 0.0001 and p = 0.001), whereas the 

difference in diagnostic accuracy of Inferior Average and the combined BC and mBm 

method was 5%, which was not statistically significant (DeLong et al. p = 0.058). The 

summary of results is shown in Table 3-2. 

  The performance as assessed by AUROC in diagnosing glaucomatous damage 

using fractal-based techniques in SLP data is 0.97 while that in OCT data is 0.89 
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respectively. There are numerous reasons that could account for such a difference. First, 

the patients with glaucoma in the present study were with mild glaucomatous damage 

whereas the previous study included all stages of glaucoma. Second, there are inherent 

differences between the 1D TSNIT RNFL data obtained using SLP and OCT that could 

account for the difference in diagnostic performance. 

 

Table 3-2. The comparison of sensitivity, specificity and AUROC among standard 

machine parameters and fractal feature-based techniques 
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Superior 

Average 
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Average 

FA 
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AUROC 

0.79 

0.63 

0.76 

0.76 

0.60 

0.70 

0.68 

0.89 

0.84 

0.83 

0.64 

0.81 

0.75 

0.93 

0.87 

0.81 

0.86 

0.89 

 

 

  A prior report by Gunvant et al. found that the diagnostic performance of the 

WFA was better when using the RNFL estimates obtained using OCT where as the FFA 

techniques performed best with SLP data 
94

. It may be possible that fractal-based 

techniques give the best diagnostic performance when utilizing SLP data. The present 

work did not have SLP data matching with OCT data, so direct statistical comparison of 

the performance of fractal-based technique in SLP versus OCT is not possible but will be 

an interesting topic of research in future. 
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  For OCT, the 1D TSNIT RNFL data has been obtained by TD-OCT (StratusOCT 

4.0 Carl Zeiss Meditec) which is still widely used and commercially available. The newer 

generation of frequency domain OCT (FD-OCT) like Cirrus OCT (Carl Zeiss Meditec, 

RTVue OCT Optovue, Inc.) provides 1D TSNIT RNFL data that have an axial resolution 

of approximately 5-6 microns. It is anticipated that performance of such fractal-based 

techniques will be maintained or improved given the decrease in signal to noise ratio of 

the new OCT‟s. This hypothesis however remains to be investigated. 

 

3.4. Conclusion 

  In this chapter, we develop and implement novel fractal-based techniques for 

improved glaucoma detection on pseudo 2D representation of SLP data. Our statistical 

analysis shows that in comparison, our FA method outperforms the standard machine 

classifiers (i.e., NFI of the GDx-VCC) with 97% accuracy in SLP data.  

  Our novel multi-fractal-based techniques for improved glaucoma detection using 

OCT data is the first attempt in literature to apply such techniques on the 1D TSNIT 

RNFL data obtained by the StratusOCT. We observe that the pseudo 2D fractal-based 

techniques for OCT data perform better than the standard machine classifier. Our novel 

multi-fractal features (i.e., the combined BC and mBm FD features) also obtain 

diagnostic accuracy greater than standalone machine outputs with 89% accuracy.  

  In the future, direct statistical comparison of the performance of fractal-based 

technique in SLP versus OCT will be investigated, since there are inherent differences 

between the 1D TSNIT RNFL data provided by the SLP (GDx-VCC) and that provided 

by the OCT (StratusOCT).  
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4. Novel Fractal/Multi-Fractal Features and Application of Multi-class 

Classification for Improved Progression Prediction 

4.1. Introduction 

  In this work, we investigate novel fractal/multi-fractal features and application of 

multi-class classification for improved glaucomatous progression prediction using the 1D 

TSNIT RNFL data acquired by SLP. Since glaucomatous damage to the RNFL is 

irreversible and glaucomatous progression worsens vision loss, detecting or predicting 

glaucomatous progression is critical in management of glaucoma. While analyzing a 

series of the visual field (VF) data obtained by standard automated perimetry (SAP) has 

been widely used in diagnosing glaucomatous progression, it has been shown that 

structural changes in the RNFL often precede functional changes in the VF data 
3-4

. Also, 

glaucomatous progression is known to be very difficult to differentiate from the test 

variability and the progression prediction may require a variety of statistical approaches. 

Hence, detecting or predicting glaucomatous progression in an objective manner by 

assessing the progressive structural damage to the RNFL still remains challenging.  

  In addition, prediction of glaucomatous progression may require a multi-class 

classifier, since it is a multi-staged disease–progression, non-progression and ocular 

normality. For two-class classification, support vector machine (SVM) has been widely 

used for its simple geometrical interpretation, but it cannot be directly applied to a multi-

class classification problem such as classification of progressors, non-progressors and 

ocular normal patients 40-41. A kernel-based SVM has been proved to be effective in 

multi-class classification due to its capacity of handling nonlinearly separable data by 
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mapping the input space into the kernel-based feature space 
42

. The Gaussian kernel has a 

corresponding infinite-dimensional feature space, which is well regularized.  

  We first extract novel fractal/multi-fractal features from 1D TSNIT RFNL data 

and normalize them accordingly. We then evaluate the effectiveness of utilizing 

fractal/multi-fractal features for classification of progressors and non-progressors, 

progressors and ocular normal patients using different types of two-class linear classifiers 

including LDA.  We also compare our methods with other types of feature-based 

techniques such as wavelet-Fourier analysis (WFA) and fast Fourier analysis (FFA). 

Next, we experiment and compare the efficacy of fractal/multi-fractal features with those 

of WFA and FFA for multi-class classification of progressors, non-progressors and ocular 

normal patients using a nonlinear Gaussian kernel SVM classifier. Finally, we evaluate 

and compare the effectiveness of our novel application of multi-class classification with 

other nonlinear methods such as neural network (NN) to predict glaucomatous 

progression. 

  For this research work, we analyze the 1D TSNIT RNFL data acquired by SLP 

from one eye of 96 real patients (14 progressors, 45 non-progressors, and 37 ocular 

normal patients). For statistical performance evaluation and comparison, we compute the 

sensitivity, specificity and AUROC for our novel fractal/multi-fractal feature-based 

techniques along with similar AUROC using other feature-based techniques such as 

WFA and FFA. 

  The rest of the chapter is organized as follows. In section 4.2, the detail methods 

of our proposed techniques are provided. Section 4.3 presents the experimental results 
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and discussions for our proposed techniques that utilize our novel fractal/multi-fractal 

features and multi-class classification. Finally, conclusion is given in section 4.4. 

 

 

 

Figure 4-1. The flowchart of our feature-based techniques and application of multi-class 

classification for glaucoma progression prediction 
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4.2. Methods 

  Figure 4-1 shows the flowchart of our novel fractal/multi-fractal based techniques 

and application of multi-class classification for glaucomatous progression prediction. For 

preprocessing, 1D TSNIT RNFL data are acquired, normalized and transformed to 

pseudo 2D images as discussed in 
33

. Then, a WFA and fractal/multi-fractal based 

techniques are applied to obtain the representative features for subsequent classification. 

PCA projection and Gaussian kernel method are utilized next for feature selection. 

Finally, Fisher‟s LDA classifier and a multi-class SVM classifier are used for two-class 

and multi-class classification problems respectively. Note these classifiers are chosen 

based on good glaucoma classification performance in our prior works 
95-96

. A 10-fold 

cross validation is also used for two-class problem wherein 90% of the data are selected 

for the training and the remaining 10% is applied for the testing. The sensitivity, 

specificity and AUROC are calculated for classification performance among progressors, 

non-progressors and ocular normal patients. AUROC is calculated using the DeLong et 

al. technique 
91

. 

  In this work, total 96 patients are followed starting from the baseline up to 40 

months. Using the SLP (GDx-VCC), 1D TSNIT RNFL data have been measured on each 

patient, approximately every 6 months. The patients are deemed progressors, non-

progressors or ocular normal on the basis of visual field (VF) test. For extracting more 

meaningful features from each group of the 1D TSNIT RNFL data, we adopt feature 

extraction techniques such as BC and mBm methods as explained in previous sections. 

We now discuss the detailed steps in the proposed techniques and the different options 
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for training and testing our classifiers for discriminating progressors, non-progressors and 

ocular normal patients respectively. 

 

4.2.1. Two-class Classification Method 

4.2.1.1. Preprocessing 1D TSNIT RNFL Data for FA 

  For effective extraction of fractal/multi-fractal features, the 1D TSNIT RNFL data 

are converted to pseudo 2D images. Briefly, for each 1D TSNIT RNFL data, its 1D 

maximum value (m) is calculated and rounded to the closest integer. Then, a 2D matrix is 

formed using the integers as the x-values and corresponding indices as the y-values. For 

the final pseudo 2D image, the resultant matrix is flipped and plotted. 

 

4.2.1.2. FD Estimation Using the Combined BC and mBm Features 

  The main difference between the BC and mBm methods lies in mono-fractal and 

multi-fractals. While the BC method only calculates the homogenous mono-fractal, the 

mBm method calculates multi-fractals using wavelet filters. The combination of BC 

method and mBm method may enhance the performance, for they may complement each 

other. The BC method acquires its FD features by counting the occupied boxes and 

dividing them by the magnitude factor, which is the reciprocal of the size of the box. This 

method is closely related to the morphology of the 1D TSNIT RNFL data (i.e., shape of 

the data). On the other hand, the mBm method involves estimation of fractal 

characteristics in multi-resolution for non-stationary signal. Therefore, second technique 

may be complementary to the features that cannot be represented by BC method alone.  
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  We extract the BC and the mBm features from the pseudo 2D TSNIT RNFL 

images. Subsequently, the resulting FDs appended to each other for subsequent analysis. 

For comparison, other existing feature-based technique such as WFA is also applied on 

the 1D TSNIT RNFL data. The extracted features are normalized and are further 

processed by principal component analysis (PCA) to be stabilized. 

 

4.2.1.3. Case Study 

  For two-class cases, Fisher‟s LDA classifier is used for the classification of the 

selected features. A 10-fold cross validation is also used where 90% of the data are 

selected for training and the remaining 10% is applied for testing. For the multi-class 

case, we first take two largest principal components (PCs) and normalize them for the use 

of the Gaussian kernel-based multi-class SVM. After finding σ, the input space is 

transformed to the kernel space. Then, a linear classifier is used for multi-class 

classification. The sensitivity, specificity and AUROC are calculated in identifying 

glaucoma from ocular normal individuals. We now discuss different options for training 

and testing our classifiers for discriminating progressors, non-progressors and ocular 

normal patients respectively. The goal is to investigate with what accuracy does the 

classifiers detect progressive damage in the RNFL due to glaucoma prior to the 

occurrence of the “event” that is progression as recorded by visual fields (VFs).   
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4.2.1.3.1. Classification of Progressors vs. Non-progressors: Training with 

90% of Progressors and Non-progressors 

  We use the complete dataset comprised of the baseline 1D TSNIT RNFL data that 

include 14 progressors and 45 non-progressors for training. Using 90% of this baseline 

dataset (progressors and non-progressors), the target classifier for each feature-based 

technique (e.g., WFA and FA) is obtained. This procedure obtains the reduced number of 

features using PCA and uses Fisher‟s LDA classifier to characterize the glaucomatous 

progression. The testing data is composed of the remaining 10% of the dataset. The 

baseline progressors are replaced with the progressors from a prior visit (1, 2 or 3 scans 

prior), and the non-progressors are replaced with the average values of non-progressors at 

all visits (up to 60 months) to prevent over-fitting problem. We assess each feature-based 

technique by calculating sensitivities, specificities and AUROC at 1 scan prior, 2 scans 

prior and 3 scans prior to the progression. The interval between successive scans (prior to 

progression) is approximately 6 months. 

 

4.2.1.3.2. Evaluation of Ocular Normal Patients 

  Along with predicting the changes in glaucoma, it is also very crucial that we do 

not have a high rate of false positives (specificities) that would limit the usability of our 

classifiers for further analysis. Consequently, for measuring specificities, we use the same 

training data and the same LDA classifiers as discussed in the previous analysis, the 

section 4.2.1.3.1, for the progressors and non-progressors case. However, the testing data 

is different and consists of 37 ocular normal patients. Here, we obtain only specificities, 

since the progressors are not included in testing. The reason for this testing is to assess 
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the effectiveness of previous classifiers for avoiding false positives in ocular normal 

patients. 

 

4.2.1.3.3. Classification of Progressors vs. Ocular Normal Patients: Training 

with 90% of Progressors and Ocular Normal Patients 

  The differentiation between the progressors and ocular normal patients using 

appropriate features is also interesting. Therefore, we first obtain the complete dataset 

comprised of the 1D baseline TSNIT RNFL data that includes 14 progressors and 37 

ocular normal patients. Similar to the section 4.2.1.3.1, using 90% of this dataset, the 

target LDA classifier for each feature-based technique is obtained. After obtaining the 

LDA classifiers, instead of using non-progressors, we use ocular normal patients as the 

test dataset. 

 

4.2.1.3.4. Classification of Progressors vs. Non-progressors: Training with 

67% of Non-Progressors and Ocular Normal Patients 

  Similar to the previous analysis, it is important to differentiate the non-

progressors from ocular normal patients for predicting the changes in the progressors. In 

this case, we train our LDA classifiers with 2/3 of non-progressors (31 out of 45 patients) 

and all of ocular normal patients (37 patients). Based on the LDA classifiers obtained 

from this training set, we classify the ocular normal patients from those who convert to 

non-progressors. By assessing the relationship between ocular normal patients and non-

progressors, we may predict the future progressors. The test data is composed of 14 

progressors at 1 scan prior, 2 scans prior and 3 scans prior to the progression and the 
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remaining 1/3 of non-progressors (14 out of 45). These 14 non-progressors are selected 

randomly and the testing is done using 10-fold cross validation. The results are then 

averaged over the 10 folds to produce a single estimation.    

 

4.2.2. Multi-class Classification Method 

  For multi-class classification, we first exploit kernel-based SVM, since such a 

nonlinear classifier has shown to be effective in discriminating nonlinearly separable data 

39
. 

 

4.2.2.1. Data Preprocessing Using the Gaussian Kernel 

  For using the kernel-based multi-class SVM, we first organize the extracted 

features into a 2D format. For this, we obtain two largest principal components (PCs) 

from the features of each input space (i.e., WFA and FA). We then apply a Gaussian 

transform as discussed in section 2.6.2 on the PCs for better separability. Using the 

modularity of kernels, we consider the outputs of Gaussian kernel function as the first 

vector, while the largest principal components (PCs) as the second vector 
42

.  

For this reason, we have adopted the kernel selection procedure shown at 
43

. The detailed 

algorithm is shown in Fig. 4-2. 

  As explained in section 2.6.2, σ of the Gaussian kernel is tuned. In this work, we 

start with 0.35 as an initial value and find that at 1.06, the Gaussian kernel function 

achieves the best separability among three classes. Figure 4-3 shows the scatter plot using 

our technique. We plot the kernel data on the y-axis versus the first PCs on the x-axis. It 

shows how this kernel method enhances the separability of features. In Figs. 4-3 (a) and 
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(b), the three classes require a nonlinear classifier. However, in Figs. 4-3 (c) and (d), the 

three sets of data are relatively better separated than Figs. 4-3 (a) and (b). Note in Fig. 4-3 

(b), the features are aligned in straight lines. A possible explanation for this feature 

alignment can be the characteristic of fractals measurement, which accounts for the 

closeness of irregularity in natural phenomenon such as TSNIT shapes. 

 

Algorithm 1 

1 .Initialize σ with a very small value 

2. Maximize the margin 

3. for each validation set 

          Calculate validation error 

         Increase the kernel parameter with pre-assigned increment: σ ← σ+δσ 

4. Stop when a pre-determined value of σ is reached. Otherwise, repeat the step 3. 

 

Figure 4-2. Pseudo code for tuning the parameter of the Gaussian kernel 
43

 

 

4.2.2.2. Application of Multi-class SVM among Progressors, Non-progressors 

and Ocular Normal Patients 

  After pre-processing the data, we train the complete 1D baseline TSNIT RNFL 

data comprised of 14 progressors and 45 non-progressors and 37 ocular normal patients. 

By using multi-class SVM, we are able to train three classes concurrently, which is not 

possible in the sections 4.2.1.3.1, 4.2.1.3.2, 4.2.1.3.3 and 4.2.1.3.4. We then obtain the 

multi-class SVM classifiers that best characterize each class‟s decision function. Finally, 
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the testing is done in a repeated manner and the rate of correct class prediction is 

measured. 

 

 
(a)                                                      (b) 

 
(c)                                                        (d) 

 

Figure 4-3. An example of using Gaussian kernel method (a) WFA (b) FA - before 

applying Gaussian kernel (c) WFA (d) FA - after applying Gaussian kernel 

 

4.3. Results and Discussions 

4.3.1. Two-class Classification Method 

  Figure 4-4 compares ROC curves among the two feature-based techniques such as 

WFA and FA. In Fig. 4-4, as discussed in section 4.2.3.1.2, we do not obtain any ROC 

curves for the method described in section 4.2.3.1.2, due to the absence of sensitivity.  
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(a)                                                         (b) 

 
(c) 

 

Figure 4-4. ROC curves for WFA and FA: (a) progressors vs. non-progressors as 

described in section 4.2.1.3.1 (b) progressors vs. ocular normal as described in section 

4.2.1.3.3 (c) progressors vs. 1/3 of non-progressors as described in section 4.2.1.3.4 

 

Table 4-1. Classification between progressors and non-progressors using WFA and FA 

on different visits (sensitivity/specificity/AUROC) with sensitivity reported in 

parentheses when specificity is fixed at 80 and at 90. 

 

Methods 1 scan prior 2 scan prior 3 scan prior 

WFA 
0.72/0.80/0.78 

(0.72;0.43) 

0.78/0.75/0.78 

(0.72;0.43) 

0.57/0.84/0.69 

(0.57;0.43) 

FA 
0.93/0.67/0.82 

(0.64;0.29) 

0.57/0.84/0.70 

(0.57;0.21) 

0.85/0.62/0.73 

(0.50;0.21) 
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  Table 4-1 shows the sensitivities, specificities and AUROC at different visits after 

the 1 scan prior to progression as explained in the section 4.2.3.1.1. The values in Table 

4-1 indicate that the prediction rate using all three feature-based techniques is highest at 

the first prior to the progression. Comparing the obtained AUROC, we find that the 

difference in classification performance WFA and FA is not significant (DeLong et al. 
91

 

p > 0.05). Table 4-2 shows the specificities for WFA and FA respectively, as explained in 

section 4.2.3.1.2. Note that FA achieves the prediction rate above 80% specificity, which 

implies that FA can predict progressive glaucomatous damage with moderate accuracy. 

The above-mentioned results show how FA can be effectively used in predicting 

glaucomatous progression. It also shows that such methods can be used in predicting 

ocular normal patient‟s glaucomatous progression.  

 

Table 4-2. Evaluation of ocular normal patients: training with data from section 4.2.1.3.1. 

 

Methods Specificity 

WFA 0.76 

FA 0.86 

 

Table 4-3. Classification between progressors and ocular normal patients using WFA and 

FA on different visits 

 

Methods 1 scan prior 2 scan prior 3 scan prior 

WFA 
0.99/0.89/0.91 

(0.99;0.29) 

0.93/0.89/0.90 

(0.93;0.29) 

0.86/0.89/0.87 

(0.86;0.50) 

FA 
0.93/0.92/0.92 

(0.93;0.86) 

0.79/0. 92/0.82 

(0.79;0.71) 

0.71/0.87/0.81 

(0.71;0.50) 
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  Table 4-3 shows the AUROC as discussed in section 4.2.3.1.3. Table 4-3 

indicates the consistency of prediction capability of FA method with moderate accuracy.  

Table 4-4 shows the result of the partial separation for training and testing. This result 

implies that partial separation among the same group may not provide the best prediction 

performance. In Table 4-4, we show that our fractal feature-based techniques offer better 

classification performance such as 0.82, 0.92 and 0.82, when compared with that of 0.78, 

0.91 and 0.70 for WFA for about 6 months (1 scan) prior to progression respectively. 

However, at two scans prior to progression, the results are reversed, and at three scans 

prior, the results are about equivalent. Note in Table 4-4 our proposed method using 

Fisher‟s LDA performs the best when compared to the least square and multivariate 

methods. Furthermore, our fractal feature-based method uses just seven features, 

compared with thirty two features for WFA method to obtain such AUROC results. 

 

4.3.2. Multi-class Classification Method 

  Figure 4-5 shows the decision boundaries for the kernel-based SVM among 

progressors, non-progressors and ocular normal patients using WFA and FA features 

respectively. In Fig. 4-5, the progressors are shown using the darkest, non-progressors are 

the lightest and ocular normal patients are medium. For comparison with another multi-

class classification technique, we use neural network (NN). Figure 4-6 shows the result of 

multi-class classification using feed forward NN method among progressors, non-

progressors and ocular normal patients using WFA and FA. 
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Table 4-4. Classification between progressors and non-progressors using WFA, FFA and 

FA on different visits: Training with the data from 2/3 of non-progressors and ocular 

normal patients and applying the obtained classifier to test all progressors and 1/3 of non-

progressors 

 

Methods Discriminant 1 scan prior 2 scan prior 3 scan prior 

WFA 

LDA 
0.93/0.57/0.70 

(0.36;0.21) 

0.79/0.50/0.65 

(0.29;0.29) 

0.79/0.57/0.60 

(0.21;0.21) 

Least Square 
0.36/0.93/0.53 

(0.36;0.36) 

0.36/0.93/0.52 

(0.36;0.36) 

0.36/0.93/0.53 

(0.36;0.36) 

Multivariate 
0.71/0.57/0.58 

(0.14;0.07) 

0.50/0.71/0.54 

(0.14;0.07) 

0.64/0.57/0.52 

(0.21;0.07) 

FFA 

LDA 
0.43/0.93/0.71 

(0.50;0.43) 

0.93/0.50/0.66 

(0.35;0.21) 

0.71/0.71/0.66 

(0.36;0.14) 

Least Square 
0.36/0.93/0.56 

(0.36;0.36) 

0.43/0.93/0.55 

(0.36;0.36) 

0.43/0.93/0.53 

(0.36;0.36) 

Multivariate 
0.93/0.36/0.56 

(0.14;0.07) 

0.93/0.36/0.51 

(0.07;0.07) 

0.93/0.36/0.53 

(0.07;0.07) 

FA (BC) 

LDA 
0.93/0.43/0.74 

(0.50;0.43) 

0.71/0.57/0.63 

(0.21;0.21) 

0.86/0.57/0.60 

(0.14;0.14) 

Least Square 
0.36/0.93/0.56 

(0.36;0.36) 

0.36/0.93/0.56 

(0.36;0.36) 

0.36/0.93/0.57 

(0.43;0.36) 

Multivariate 
0.93/0.57/0.68 

(0.36;0.29) 

0.79/0.57/0.59 

(0.14;0.07) 

0.86/0.43/0.55 

(0.21;0.07) 

FA (mBm) 

LDA 
0.93/0.64/0.76 

(0.29;0.29) 

0.93/0.64/0.72 

(0.14;0.07) 

0.86/0.57/0.64 

(0.14;0.07) 

Least Square 
0.43/0.86/0.55 

(0.43;0.36) 

0.43/0.86/0.55 

(0.43;0.36) 

0.43/0.93/0.56 

(0.43;0.43) 

Multivariate 
0.93/0.50/0.66 

(0.07;0.07) 

0.93/050/0.62 

(0.07;0.07) 

0.86/0.57/0.62 

(0.07;0.07) 

FA 

(BC+mBm) 

LDA 
0.93/0.64/0.82 

(0.79;0.43) 

0.93/0.64/0.76 

(0.29;0.29) 

0.93/0.50/0.76 

(0.43;0.43) 

Least Square 
0.36/0.93/0.56 

(0.36;0.36) 

0.36/0.93/0.55 

(0.36;0.36) 

0.36/0.93/0.55 

(0.36;0.36) 

Multivariate 
0.93/0.50/0.63 

(0.07;0.07) 

0.93/0.43/0.59 

(0.07;0.07) 

0.86/0.50/0.57 

(0.07;0.07) 
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(a)                                                                   (b) 

 

Figure 4-5. Multi-class classification using SVM with three classes (darkest -

progressors; lightest-non-progressors; medium-ocular normal patients) (a) WFA (b) FA 
 

 

 
(a)                                                               (b) 

 

Figure 4-6. Multi-class classification using NN with three classes (a) WFA (b) FA 

(circles – progressors; diamonds – non-progressors; stars – ocular normal patients) 

 

  Table 4-5 summarizes and compares the multi-class SVM classification results 

with NN method for predicting glaucomatous progression. Here again we show FFA 

performance results for complete comparison 
97

. Since this result is for multi-class 

classification, separate sensitivity and specificity measures cannot be obtained. Table 5 

shows the better correct rate of 0.88 for multi-class classification using our multi-class 
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SVM method among progressors, non-progressors and ocular normal patients using FA, 

compared with those of 0.82 and 0.86 using WFA and FFA respectively. 

  Table 4-6 shows further comparison of our fractal feature-based technique with 

other existing approaches to glaucomatous progression prediction in literature 
60-61

. Note 

both Vermeer et al. and Alencar et al. achieved better sensitivity than ours. Vemeer et al. 

used two different datasets to obtain such measures (e.g., dataset A for specificity and 

dataset B for sensitivity). Similarly, Alencar et al. used an observational cohort study 

where there are too many glaucoma patients including the progressors compared to ocular 

normal patients (431 glaucomatous and 22 ocular normal out of 453 total patients, which 

is, 95% to 5% ratio for glaucoma patients). In comparison, our patient data is more 

balanced such that our corresponding ratio between glaucoma and ocular normal patients 

is 61% to 39% (59 glaucomatous and 37 ocular normal patients out of 96 total patients).  

 

Table 4-5. Correct classification rates for using FFA 
96

, WFA and FA 

 

Methods 
Correct Rate 

(SVM) 

Correct Rate 

(NN) 

WFA 0.82 0.72 

FFA 0.86 0.76 

FA 0.88 0.77 
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Table 4-6. Comparison of the fractal feature-based technique with existing methods 

 

Authors Number of patients 
Dataset 

Acquisition 

Feature 

Extraction 

Classification 

Result 
Training/Testing 

Vermeer 

et al.  

812 normal eyes  from 

154 patients 

3351glaucoma eyes 
from 489 patients 

20 progressors 

GDx-VCC 

Global loss 

and local loss 
from 1D 

TSNIT RNFL 

data 
 

Sensitivity: 0.420 

Specificity: 0.905 

Training –  
dataset A: the ocular normal 

patients dataset for specificity 

dataset B: the progressors set for 
sensitivity 

Testing – Using the same sets via 

k-fold cross validation. 

Alencar 

et al.  

453 eyes from 252 

patients 
GDx-VCC 

1D TSNIT 

RNFL data 

Sensitivity: 0.500 

Specificity: 0.960 

Training – 

GDx-GPA (Inherently trained  

using Normative Database (540 

normal and 271 glaucoma)) 

Testing – 

453 patients   

Our 

current 

work 

96 eyes (14 
progressors, 45 non-

progressors, 

37 ocular normal 
patients) 

GDx-VCC 

Fractal (BC & 

mBm) 
features from 

pseudo 2D 

TSNIT RNFL 
data 

 

AUROC: 0.820  

(section 4.2.1.3.1) 
Specificity: 0.860 

(section 4.2.1.3.2) 

Training – 

Using 90% of the dataset 
Testing – 

 10% (10-fold cross validation) 

 

Table 4-7. Comparison of computational time among FFA, WFA and FA 

 

  Elapsed Times 

FFA WFA FA 

Feature 
Extraction 

Feature 
Selection 

Total 
Time 

Feature 
Extraction 

Feature 
Selection 

Total 
Time 

Feature 
Extraction 

Feature 
Selection 

Total 
Time 

2.24 344.28 346.52 1.78 75.58 77.36 30.19 2.24 32.43 

 

 

  Therefore, our technique in this study obtains comparable or better results with 

more balanced patient dataset than those reported in literature 
60-61

. Furthermore, while 

the existing methods utilize feature extraction that involves up to 64 Fourier coefficients, 

our technique exploits only seven fractal features, which results in less computational 

complexity. Table 4-7 shows the comparison of the computation time among FFA, WFA 

and FA for feature extraction and selection respectively. Note we use a PC with the CPU 

speed of 3.06GHz and the memory of 3.48 GB for all our processing in this work. Table 
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4-7 shows that while FA takes more time in feature extraction step, it takes the less time 

overall compared to the other methods due to the less number of features. 

 

4.4. Conclusion 

  In this work, we demonstrate the efficacy of novel fractal and multi-fractal 

feature-based techniques to detect glaucoma and predict glaucomatous progression. We 

also compare our performance with existing feature-based techniques such as WFA and 

FFA. We then report the effectiveness of classification of progressors, non-progressors 

and ocular normal patients using multi-class SVM. Statistical analyses show that our 

novel multi-fractal feature-based technique can predict glaucomatous progression more 

effectively than the existing feature-based techniques such as WFA and FFA. In addition, 

we also show that application of multi-class SVM classification can discriminate the 

different stages of glaucomatous progression. Our fractal feature-based technique also 

achieves either better or comparable performance, when compared to those in literature 

with less number of features and less computational complexity. 
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5. Selective Fusion of Structural and Functional Data for Improved Glaucoma 

Detection 

5.1. Introduction 

  Glaucoma is a progressive optic neuropathy characterized by both structural and 

functional damages to the visual system. It has been known that retinal ganglion cell 

death corresponds to the structural changes in retinal nerve fiber layer (RNFL) 
1-4

. 

Glaucomatous damages may also result in functional deficits in visual field (VF) and 

ultimately cause blindness 
51, 68

. For a complete and reliable assessment of glaucoma, it 

may be necessary to consider both structural and functional damages. The RNFL defect 

and VF loss in glaucoma have been shown to be closely related. Such a relation indicates 

a local correspondence between structural and functional changes in glaucoma 
48

. Hence, 

it is desirable to exploit a known relationship between structural and functional data such 

that a topographic correspondence may provide better glaucoma detection 
98-100

. Further, 

directly combining structural and functional data has shown improvement of the 

diagnostic capability of glaucoma 
47

. Consequently, we investigate selective feature-

based fusion that exploits the known topographic correspondence. 

  For effective fusion of structural and functional data, we first separately perform 

structural and functional analyses to acquire respective features utilizing feature-based 

techniques. For functional analysis, we apply our novel feature-based techniques on VF 

data. The VF test is known to detect certain minute functional deficits which may not be 

detected by the patients until severe vision loss has progressed 
51, 68

. Also, it is known to 

be difficult to differentiate the true VF deficits from the variability caused by the patient 

response fluctuations. Hence, in this work, we investigate quantitative feature-based 
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techniques on the labeled VF data vectors for detection of glaucoma. We first label the 

VF data according to our labeling methodology and the labeled VF data are converted 

into 1D data vectors. Then the labeled VF data vectors are stacked into a matrix for 

further processing.  

  For structural analysis, we analyze both 1D and 2D RNFL eye scan data. For 1D 

RNFL analysis, we use 1D temporal, superior, nasal, inferior, and temporal (TSNIT) 

graph, which is RNFL thickness data acquired by scanning laser polarimetry around the 

parapapillary retina area. A TSNIT graph shows a unique double-hump pattern due to a 

much greater number of ganglion cells and their axons entering the optic disc superiorly 

and inferiorly. Hence, we utilize our novel feature-based techniques on 1D TSNIT RNFL 

data for 1D structural analysis. For 2D RNFL assessment, we investigate 2D feature-

based techniques on specific regions of interest (ROIs) such that ROIs may better 

represent the glaucomatous damages.  

  In any data processing, 2D image data provides more information than 1D data 

vectors 
77

. By utilizing real 2D eye scan image data, we may be able to fully exploit the 

whole 2D image data. It has been shown that the standard methods and other feature-

based techniques have been applied only on 1D TSNIT RNFL data 
5-8

. Consequently, we 

investigate the 2D feature-based techniques on real 2D RNFL image data. For 2D RNFL 

assessment, we investigate 2D feature-based techniques on specific regions of interest 

(ROIs) such that ROIs may better represent the glaucomatous damages. To obtain such 

ROIs, we first take the squares that include the surrounding areas of the optic disc. We 

then exclude the squares that include the optic disc, since the features from the optic disc 
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do not contain useful information. We then apply fractal analysis (FA) using piecewise 

triangular prism surface area (PTPSA) method to acquire fractal dimension (FD) features. 

  Finally, we investigate a novel selective feature-based fusion method using the 

results from structural and functional analyses that exploit respective features. For this 

novel selective fusion task, we obtain the topographic correspondence between the 

structural and functional data utilizing the mapping definition table. The mapping 

definition table divides the corresponding structural and functional data into 10 clusters 

respectively. Utilizing the mapping definition table, we then obtain the cluster-wise 

correlation coefficients between structural and functional data. Such coefficients can be 

regarded as the strength of correspondence. We use the cluster-wise strength of 

correspondence as the global coefficients to weight corresponding structural and 

functional data for emphasizing the areas of significance in the clusters. We then select 

only the clusters that are more emphasized than others and discard the rest of the clusters. 

We also extract respective fractal analysis (FA) features from the selected clusters of both 

structural and functional data. Next we append the fractal analysis (FA) features from the 

functional data to those from the structural data. We compute the classification 

performance of our feature-based selective fusion method for improved glaucoma 

detection. 

  The rest of the chapter is organized as follows: In section 5.2, the detail methods 

of feature-based functional analysis using labeling methodology, feature-based real 2D 

structural analysis and a selective fusion method on structural and functional data are 

provided. Section 5.3 presents the experimental results and performance evaluation of the 

proposed techniques. Finally, conclusion is given in section 5.4. 
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Figure 5-1. The flowchart of our selective feature-based fusion method using fractal 

features from structural and functional data for glaucoma detection 

 

5.2. Methods 

  Figure 5-1 shows the overall flowchart of our selective feature-based fusion 

method using fractal features from structural and functional data for improved glaucoma 

detection. In this work, we use 154 eyes (85 right and 69 left; 77 glaucomatous and 77 

ocular normal patients; 59 male and 95 female). Average age for these 154 patients is 

57.06 with a standard deviation of 11.82. The glaucomatous and ocular normal patient 

groups are matched for age and the difference in age between them was significant 

(independent samples t-test t = -2.13, p = 0.036). We perform statistical analysis by 

calculating sensitivity, specificity and AUROC. For complete comparison, we compare 

our performance with those of existing feature-based techniques such as WFA and FFA. 

We briefly discuss each step in Fig. 5-1 below. 

Functional Data (VF) 

Normalization  

Selection of Clusters 

Feature Fusion 

 

Structural Data (RNFL) 

 

Labeling and 

Normalization 

  

Computation of Classification Performance 

Multiplied with Global Coefficients 

 

Computation of FD features (BC+mBm) 

Calculation of Global Coefficients Using Mapping Table 
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5.2.1. Functional Analysis 

5.2.1.1.  Labeling Methodology 

  Our functional analysis begins by labeling the VF sensitivities at each of 59 

locations in our novel labeling methodology. For the labeling methodology, we arrange 

the entire 59 VF points corresponding to the visual sensitivities into 1D data vectors by 

labeling and regrouping them with our pre-determined labeling indices. For labeling the 

VF points, Ferreras et al. report using a raster scan labeling for the VF data acquired by 

Humphrey perimeter as shown in Fig. 5-2 
98

. In this labeling, the test pattern has 52 

points and the points have been labeled either from right to left or from left to right. Then 

the next downward lines follow the previous steps.  

  Unlike other labeling such as a raster scan method 
98

, we label VF points in a 

clockwise fashion for the left eyes and counterclockwise for the right eyes. This labeling 

is consistent with that proposed in Strouthisdis et al. 
99

. In Fig. 5-3, our novel labeling 

methodology of 59 VF test points is shown. In Fig. 5-3, the labeling starts from the center 

point. We follow the labeling from the center point to the point that is located either in 

45° for the left eye or 135° for the right eye. We follow in the subsequent points in a 

clockwise fashion for the left eye and in a counterclockwise fashion for the right eye. 

Once the labeling is done, all the VF points of a specific patient are obtained in a vector 

form. These VF data vectors are stacked together for all the patients.  
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(a)                                                                             (b) 

 

Figure 5-2. Numbering of 24-2 Swedish Interactive Threshold Algorithm (SITA)  

standard automated perimetry (SAP) test 
98

 

 

  

 
 

 

Figure 5-3. The proposed labeling of Octopus VF points in our work  

 

5.2.1.2. Evaluation of Feature-based Techniques on VF Data Vectors 

  After extracting the VF data vectors, we apply our novel fractal feature-based 

techniques on the VF data vectors to acquire fractal dimension (FD) features.  The FD 
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features obtained by using a BC method are appended on top of the FD features obtained 

by mBm method. Once the FD features are acquired, we use PCA for feature 

dimensionality reduction. We then obtain a Fisher‟s LDA classifier using the reduced FD 

feature dataset. The LDA classifier is trained with 90% of data while we use the rest 10% 

of data for testing. For checking the validity of this classifier, we take advantage of 10-

fold cross validation and estimate the statistical performance. The results are then 

averaged over the 10 folds to produce a single AUROC estimation. The sensitivity and 

specificity are calculated using a statistical software, known as IBM SPSS Statistics 18. 

 

5.2.2. Real 2D Structural Analysis  

5.2.2.1. 1D TSNIT RNFL Analysis 

  For 1D structural analysis, we analyze 1D TSNIT RNFL data acquired by 

scanning laser polarimetry (SLP). In this analysis, there are 213 study participants (108 

glaucoma and 105 ocular normal patients). However, for complete comparison with 

functional analysis and fusion method, we only use 154 out of 213 study participants (77 

glaucoma and 77 ocular normal patients). For 1D TSNIT RNFL analysis, the details of 

the fractal/multi-fractal techniques are shown in the section 4-2. We compute sensitivity, 

specificity and AUROC for our feature-based technique and other existing feature-based 

techniques, such as FFA and WFA.  
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Table 5-1. Comparison of AUROC and the number of coefficients. The * represent 

following: *@ 27
th

 feature vector; †@ 28
th

 feature vector; ‡@ 8
th

 feature vector
 

 

ROI 
AUROC 

(FFA) 
AUROC 
(WFA) 

AUROC 
(FA)  

# of Coefficients 

(FFA) (WFA) (FA) 

47x47 0.88 0.84 0.86 1105 836 36 

51x51 0.91 0.89 0.91 1301 983 49 

53x53 0.91 0.94† 0.91 1405 1061 49 

55x55 0.92* 0.92 0.93 1513 1142 49 

59x59 0.91 0.90 0.93 1741 1313 64 

63x63 0.91 0.90 0.95‡ 1985 1496 64 

67x67 0.89 0.93 0.94 2245 1691 81 

71x71 0.90 0.93 0.92 2521 1898 81 

75x75 0.90 0.94 0.92 2813 2117 100 

79x79 0.92 0.92 0.92 3121 2348 100 

83x83 0.91 0.92 0.92 3445 2591 121 

 

Table 5-2. Comparison of the elapsed times. The *,† and ‡ represent following the 

corresponding box sizes in Table 5-1 that provide best AUROC  

 
 Elapsed Times 

ROI 

(FFA) (WFA) (FA) 

Feature 

Extract

-ion 

Feature 

Selection 

Total 

Time 

Feature 

Extract-

ion 

Feature 

Selection 

Total 

Time 

Feature 

Extract-

ion 

Feature 

Selection 

Total 

Time 

47×47 2.24 397.81 400.05 2.29 243.15 245.44 89.11 23.60 112.71 

51×51 2.79 542.97 545.76 2.64 317.26 319.90 121.88 24.36 146.24 

53×53 2.96 618.62 621.58 2.90 382.47 385.37† 124.58 24.26 148.84 

55×55 3.11 697.73 700.84* 3.00 418.73 421.73 123.58 24.26 147.84 

59×59 3.63 920.67 924.30 3.45 555.00 558.45 159.08 25.72 184.80 

63×63 4.00 1167.26 1171.26 3.90 708.67 712.57 161.76 25.54 187.30‡ 

67×67 4.86 1487.40 1492.26 4.39 806.91 811.30 200.62 27.83 228.45 

71×71 5.52 1877.64 1883.16 4.91 1097.39 1102.30 200.13 27.79 227.92 

75×75 5.65 2342.99 2348.64 5.33 1349.27 1354.60 246.86 30.91 277.77 

79×79 6.82 2878.96 2885.78 6.11 1629.35 1635.46 250.10 31.34 281.44 

83×83 7.57 3518.53 3526.10 6.73 1985.65 1992.38 298.73 35.59 334.32 

Total 49.15 
14650. 

58 

14699. 

73 
45.65 9493.85 9539.50 

1976. 

43 
301.20 2277.63 

 

 

5.2.2.2. Real 2D RNFL Analysis 

  For 2D structural analysis, we first find an ROI that provides the best 

classification performance using real 2D RNFL data. The size of real 2D RNFL image 
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data is 256×128, which are 32,768 pixels. However, not all of the pixel information may 

be useful. Figure 5-4 shows average RNFL images (55×55) that include the optic disc for 

2D glaucomatous and ocular normal patients. Note in Fig. 5-4 that the average 2D RNFL 

images for glaucomatous patients are different from those for ocular normal patients. 

Hence, we investigate the ROIs from the original 2D RNFL (256×128) images for the 

best performance. We choose box-shaped ROIs for ease of data processing. Further, we 

use piecewise triangular prism surface area (PTPSA) method for fractal feature extraction 

30
. The detailed algorithm to compute the FD using the PTPSA method is shown in Fig. 

5-5.  

  According to GDx-VCC manual 
101

, the default calculation circle for TSNIT, 

which has a form of a band, is centered on the optic disc. The inner diameter of the band 

is 2.4 mm, the outer diameter of the band is 3.2 mm, and the band is 0.4 mm wide. Since 

one pixel is equivalent to 0.0465 mm, the inner diameter is equivalent to 52 pixels and 

the outer diameter is 70 pixels. Using this information, in Table 5-2, the AUROC is 

compared as the box size is increased in the step of 4 pixels from the box size of 47×47 to 

that of 83×83 where the centers of the ROIs are aligned with those of the optic discs. 

Note in Table 5-1 that the box sizes that generate the highest AUROC for FFA, WFA and 

FA are 55×55, 53×53 and 63×63 respectively. These box sizes are within between the 

inner diameter pixel size (52) and the outer diameter pixel size (70). We study the effect 

of less number of coefficients needed for FA further. Table 5-2 compares the elapsed 

time for the feature-based techniques. In Table 5-2, it is shown that total elapsed time for 

best AUROC performance for FA is about 50% of that for WFA and 25% of that of FFA 
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respectively. Thus, it is shown that FA performs with less number of features and less 

computational complexity.  

 

 
(a)                                                                           (b) 

 

 
(c)                                                                           (d) 

 

Figure 5-4. Average RNFL images (55×55) that include optic disc for (a) 2D 

glaucomatous (b) 2D ocular normal (c) 3D glaucomatous (d) 3D ocular normal patients 

 

  Based on the findings in Table 5-2, we first obtain the squares that include the 

surrounding areas of the optic disc. We then exclude the squares that include the optic 

disc, since the features from the optic disc do not contain useful information. For this 

task, we measure all the optic disc sizes from 154 study participants. Since the largest 
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optic disc diameter is 48, we select 48×48 as the common inner box size. The largest 

possible outer box size is according to the shortest distance from the position of the 

centroids of the optic discs, which is 48 and is doubled for preventing overlapping. 

 

Algorithm 3 

for each sub-image 

     Divide sub-image into boxes of size n × n 

      for each box of size n × n 

        Find the surface area of the four triangles formed by treating gray  

                value as the third dimension and connecting the four corner points   

                 with the center point and each other. 

           Sum surface areas for entire sub-image 

     FD = log(sum of surface areas)/log(n)  

 

Figure 5-5. Pseudo code for piecewise triangular prism surface area (PTPSA) method 

 

 Hence, the resulting outer box size is 96×96. To make it symmetric, we choose an 

odd number of box size. Hence, the inner box size of 47×47 is selected while the outer 

box size of 95×95 is selected. An example for a patient is shown in Fig. 5-6. 

 

              
(a)                              (b) 

Figure 5-6. An example of a patient (a) outer box (95×95) (b) inner box (47×47) 
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6.70 6.53 6.61 7.17 7.30 7.25 7.01 7.32 7.16 7.04 6.82 6.70 

6.69 6.39 6.46 6.95 6.85 7.09 7.23 7.45 7.25 6.72 6.65 6.66 

6.49 6.43 6.68 6.78 7.28 7.69 7.67 7.71 7.73 6.80 6.77 6.67 
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6.83 6.66 6.63 7.13 7.38 7.45 7.48 7.29 7.05 6.91 6.74 6.66 
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(a) 

7.17 7.30 7.25 7.01 7.32 7.16 

6.95 6.85 7.09 7.23 7.45 7.25 

6.78 7.28 7.69 7.67 7.71 7.73 

6.92 7.01 7.84 7.54 7.60 7.61 

6.93 7.40 6.95 7.32 7.53 7.56 

7.13 7.38 7.45 7.48 7.29 7.05 

(b) 

 

Figure 5-7. FA (PTPSA) features from (a) the outer box (b) the inner box optic disc area 

 

Based on these box sizes, the feature-based techniques such as FFA, WFA and 

FA are applied on the real 2D RNFL data. For FFA and WFA, we subtract the resulting 

2D FFA and 2D WFA features of the inner boxes from those of the outer boxes, with the 

center points aligned using a shift function. The features from the inner box that 

corresponds to optic disc area are subtracted since optic disc does not contain any 
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information about glaucoma. After adjustment for the optic disc area, we obtain PCA and 

LDA classifiers for FFA and WFA features respectively.  

  For FA, the 2D fractal dimension (FD) features are obtained based on 8×8 block 

processing. Figure 5-7 shows an example of the FD features acquired from the outer box 

(95×95) and the inner box (47×47) respectively for a glaucomatous patient. Note in Fig. 

5-7 the FD features acquired from the inner box are the exactly same as the central 

portion of the FD features acquired from the outer box. Figure 5-8 is the effective ROI 

for this study. 
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Figure 5-8. FA (PTPSA) features of the ROI that subtract those from the inner box 

 

  After the 2D FD features are obtained, we obtain PCA for dimensionality 

reduction and obtain LDA classifiers for the final classification task.  
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5.2.3. Selective Feature-based Fusion of Structural and Functional Data  

  In this section, we first study the cluster-wise structural and functional 

relationship for selective feature-based fusing for improved glaucoma detection. Fig. 5-9 

shows a mapping between the 1D 64-point TSNIT RNFL data and 59 VF test points in 10 

clusters according to the polar angle segmentation, explained in Table 5-3 
102

. In order to 

show an example mapping, the 1
st
 RNFL zone (0-70°) is associated with the four VF 

points in the 1
st
 VF cluster as shown in Fig. 5-9. Note that while polar angle analysis is 

done in a clock-wise way, the clusters are labeled in a counter-clock-wise way due to the 

fact that the RNFL defects and VF defects are vertically mirrored. Table 5-3 is the 

mapping definition table that contains the actual VF points in each cluster. 

  To ascertain the degree of the association between the clusters of the 1D TSNIT 

RNFL and VF data, we obtain the scatter plots between the 1D TSNIT RNFL and VF 

data for 154 patients. We show the corresponding 10 clusters in Fig. 5-10. On each 

cluster scatter plot, linear regression analysis has been done to analyze the association 

between the 1D TSNIT RNFL and VF data. Linear regression analyses indicate that there 

are positive trends in 2
nd

, 9
th

, 4
th

, 3
rd

 and 7
th

 clusters while there is a negative trend in 8
th

 

cluster. We then compute the degree of the association for each cluster using Pearson‟s 

correlation coefficients. Figure 5-11 (a) shows the different degrees of association on the 

different clusters. We select four clusters that are most related based on Pearson‟s 

coefficients. We then discard the information in the other clusters and utilize only 2
nd

, 3
rd

, 

8
th

, and 9
th

 clusters that are weighted with the global coefficients as shown in Fig. 5-11 

(b) (c). Therefore we use 40% of RNFL TSNIT and VF data for the rest of this work. 
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(a)                                                                  (b) 

 

Figure 5-9. (a) VF clusters (b) Corresponding optic disc polar angle sections 
102

 

 

 

 
(a)                                 (b)                                (c)                              (d) 

 
(e)                                 (f)                                (g)                              (h) 

 
(i)                               (j) 

Figure 5-10. Scatter plots showing the association between the TSNIT measured by SLP 

and VF measured by SAP in each cluster.  
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(a) 

 
(b)                                                                    (c) 

 

Figure 5-11. (a) Global coefficients for each cluster (b) the selected VF clusters (c) the 

selected TSNIT clusters 

 

 

Table 5-3. Cluster (or Mapping) definition table using the RNFL angles and the 

corresponding VF points 
102

 

 

Cluster # Polar Angle Start Polar Angle End Corresponding VF points 

1 0 70 3,4,8,17 

2 71 102 7,12,13,14,15,16,25,35,51 

3 103 116 26,27,28,36 

4 117 140 29,37,38,39,40,52,53,54 

5 141 179 41,42,55,56 

6 181 222 43,44,57,58 

7 223 250 30,32,45,46,47,48,49,59 

8 251 257 10,19,22,23,31,33 

9 258 290 6,11,20,21,24,34,50 

10 291 359 1,2,5,9,18 
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5.3. Results and Discussions 

5.3.1. Functional Analysis 

  Figure 5-12 shows the VF data points from the normal and glaucomatous eyes 

(right and left) for all 154 eyes. As discussed earlier, these VF data points have been 

labeled and plotted separately for comparison purpose. Note in Figs. 5-11 (b), (d), (f) and 

(h) the right and left eyes in each group (i.e., normal and glaucomatous eyes) have similar 

shapes respectively. For normal eyes, as shown in Figs. 5-11 (a) and (c), the plots show 

monotonically decreasing values without much variation. However, the shape of 

glaucomatous eyes have very different values than that of normal eyes as shown in Figs. 

5-11 (e) and (g) wherein there are considerable irregularity and abrupt changes. Such 

differences and changes in the shape of the VF data points between normal and 

glaucomatous eyes justify the use of the feature-based techniques such as FFA, WFA and 

FA.  

   Figure 5-13 shows the comparison of ROC curves for the feature-based methods 

in our functional analysis. Note in Fig. 5-13 our fractal/multi-fractal feature-based 

technique performs the best among all other feature-based techniques. Table 5-4 shows 

the comparison of sensitivity, specificity and AUROC for FFA, WFA and FA (the 

combined BC and mBm method) in the same functional analysis. In Table 5-4, our 

fractal/multi-fractal feature-based technique performs the best among all feature-based 

techniques with corresponding AUROC of FFA, WFA and FA (the combined BC and 

mBm method) being 0.87, 0.87 and 0.95 respectively. In this analysis, the FA offers the 

highest AUROC and is significantly different when compared to the FFA and WFA using 

DeLong et al.‟s method 
91

, for p = 0.03 and 0.006 respectively. The best performance of 
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fractal/multi-fractal features demonstrates that embedded irregularity and randomness 

have been well characterized. Hence, our novel FA technique outperforms other feature-

based techniques such as FFA and WFA by the margin of 8% in the functional analysis. 

However, this result does not match the performance of using the mean deviation (MD) 

method. The AUROC of the MD is 0.98. There are several possible reasons why our 

proposed feature-based results may not be as good as using the MD method. First, the 

patient group we study may not reflect enough local variation or randomness in their 

original VF data. Hence, a global index such as the MD performs well while feature-

based techniques such as FFA, WFA or FA may not perform. Second, even with the 

novel labeling methodology, the VF data vectors may not contain structural information 

in the case of the RNFL. Consequently, the performance may not be comparable. To 

address this issue, we plan to utilize the topographic correspondence between structural 

and functional data to fuse useful information from both domains for improved glaucoma 

detection.   
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(a)                                                   (b)                                

 
(c)                                                   (d) 

 
(e)                                                    (f)                                

 
(g)                                                     (h) 

 

Figure 5-12. 1D Visual field (VF) plotting for (a) normal right eyes (b) the mean value of 

the normal right eyes (c) normal left eyes (d) the mean value of the normal left eyes (e) 

glaucomatous right eyes (f) the mean value of the glaucomatous right eyes (g) 

glaucomatous left eyes (h) the mean value of the glaucomatous left eyes 
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Figure 5-13. The comparison of ROC curves for FFA, WFA and FA (BC+mBm) in 

functional analysis 

 

Table 5-4. The comparison of sensitivity, specificity and AUROC for functional analysis 

                         

Methods 
(Sensitivity/Specificity/AUROC) 

(Sensitivity at 80; Sensitivity at 90) 

FFA 
0.84/0.99/0.87 

(0.84; 0.84) 

WFA 
0.84/0.99/0.87 

(0.84; 0.84) 

FA (BC+mBm) 
0.92/0.99/0.95 

(0.92; 0.92) 

 

5.3.2. Structural Analysis 

  In this section, we use our novel FD along with FFA and WFA features for 1D 

and 2D RNFL structural analysis. Table 5-5 shows the comparison of AUROC for 1D 

RNFL structural analysis while Table 5-6 shows that of 2D RNFL structural analysis. We 

use the same PTPSA method for computing FD in this analysis. We then compute the 

AUROC that discriminates between glaucoma and ocular normal patients with selected 
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the classifiers based on FFA, WFA and FA features extracted from the ROIs of real 2D 

RNFL image data. Note both 1D and 2D RNFL data analyses, even with our novel fractal 

features from real 2D RNFL image data, are not comparable to 0.94 AUROC of the 

standard machine method known as the Nerve Fiber Index (NFI). There may be several 

reasons for this. First, literature review shows that real 2D RNFL image may not better 

represent the characteristic of glaucoma than 1D TSNIT RNFL 
5-8

. 

 

Table 5-5. Comparison of AUROC for 1D TSNIT RNFL analysis 

 

Methods 
(Sensitivity/Specificity/AUROC) 

(Sensitivity at 80; Sensitivity at 90) 

FFA 
0.87/0.93/0.89 

(0.87; 0.87) 

WFA 
0.87/0.93/0.91 

(0.87; 0.87) 

FA 
0.90/0.92/0.91 

(0.94; 0.73) 

 

Table 5-6. Comparison of AUROC for real 2D RNFL analysis without optic disc 

 

Methods 

(Sensitivity/Specificity/AUROC) 

(Sensitivity at 80; Sensitivity at 90) 

(without optic disc) 

FFA 
0.92/0.92/0.91 

(0.95; 0.92) 

WFA 
0.88/0.87/0.91 

(0.90; 0.81) 

FA 
0.92/0.90/0.92 

(0.95; 0.90) 

 

  Second, we choose specific ROIs for real 2D analysis as square shape while the 

better representation may be circular shape. Since separate feature-based analyses of VF 
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and RNFL data do not offer better glaucoma detection performance, we investigate 

fusion analysis of these data next. 

 

5.3.3. Selective Feature-based Fusion Analysis 

  We first plot 1D TSNIT RNFL and VF data and corresponding mean values in 

Fig. 5-14. As can be seen in Fig. 5-14 (b)(d), neither of glaucomatous 1D TSNIT RNFL 

or VF data is distinct in its shapes. For fusion, we then multiply each signal and the mean 

values in Fig. 5-14 with Pearson‟s correlation coefficients. Figure 5-15 shows the plots of 

1D TSNIT RNFL and VF data after the multiplication with the Pearson‟s correlation 

coefficients. 

    

1 2 3 4 5 6 7 8 9 10

20

40

60

80

100

120

140

Clusters

T
S

N
IT

1 2 3 4 5 6 7 8 9 10

20

40

60

80

100

120

140

Clusters

T
S

N
IT

1 2 3 4 5 6 7 8 9 10
18

20

22

24

26

28

30

32

34

Clusters

V
F

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

Clusters

V
F

 
(a)                             (b)                                (c)                                 (d) 

1 2 3 4 5 6 7 8 9 10
20

30

40

50

60

70

80

Clusters

T
S

N
IT

1 2 3 4 5 6 7 8 9 10
20

30

40

50

60

70

80

Clusters

T
S

N
IT

1 2 3 4 5 6 7 8 9 10
24

25

26

27

28

29

30

31

Clusters

V
F

1 2 3 4 5 6 7 8 9 10
12

14

16

18

20

22

24

Clusters

V
F

 
(e)                             (f)                                (g)                                 (h) 

 

Figure 5-14. Clusters for (a) TSNIT (Normal) (b) TSNIT (Glaucoma) (c) VF (Normal) 

(d) VF (Glaucoma); Mean values for (e) TSNIT (Normal) (f) TSNIT (Glaucoma) (g) VF 

(Normal) (h) VF (Glaucoma)   

 

  This simple fusion method emphasizes the more informative areas in both 1D 

TSNIT RNFL and VF data, making them distinctly display double hump patterns as 
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shown in Fig. 5-15. We then extract FFA, WFA and FA features from the weighted 

structural and functional data as shown in Fig. 5-15. The respective features from the 

functional data are appended to those from the structural data. We compare the AUROCs 

of the fusion methods on the feature-based techniques and include the performance of the 

raw data performance for complete comparison.  
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(e)                             (f)                                (g)                                 (h) 

 

Figure 5-15. Clusters multiplied by R values for (a) TSNIT (Normal) (b) TSNIT 

(Glaucoma) (c) VF (Normal) (d) VF (Normal); Mean values for (e) TSNIT (Normal) (f) 

TSNIT (Glaucoma) (g) VF (Normal) (h) VF (Normal)  

  

   For complete comparison, we first show the results from simple fusion of 

structural and functional data. The AUROCs of structural, functional and a simple fusion 

method and a selective fusion method for raw, FFA, WFA and FA are shown in Table 5-

7. Table 5-7 shows that all of simple fusion methods on raw, FFA, WFA and FA enhance 

the classification performance. Specifically, simple fusion of FA features from the 

structural and functional data offers 0.98 AUROC, which is comparable to using only the 

MD. Next we show that our novel selective fusion method using FA features outperforms 
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all feature-based and MD methods with AUROC of 0.99. It is obvious that not much can 

be improved in classification performance from AUROC of 0.98 for the MD method. 

However, it is important to not that we achieve improved glaucoma detection 

performance with fusion of only 40% of VF and RNFL data.  

 

Table 5-7. Comparison of AUROC of structural, functional and their selective fusion for 

raw, FFA, WFA and FA after the cluster-wise multiplication of Pearson‟s correlation 

coefficients  

 

Methods 

(Sensitivity/Specificity/AUROC) 

(Sensitivity at 80; Sensitivity at 90) 

Structural (RNFL) Functional (VF) 
Fusion of all VF 

and RNFL data 

Selective fusion of 40%  

VF and RNFL data  

Raw 
0.84/0.91/0.94 

(0.92; 0.84) 

0.78/0.99/0.92 

(0.88; 0.79) 

0.87/0.97/0.96 

(0.92; 0.90) 

0.96/0.90/0.98 

(0.96; 0.95) 

FFA 
0.87/0.90/0.94 

(0.90; 0.84) 

0.78/0.96/0.92 

(0.88; 0.79) 

0.86/0.99/0.96 

(0.96; 0.87) 

0.96/0.94/0.98 

(0.97; 0.96) 

WFA 
0.84/0.95/0.94 

(0.88; 0.84) 

0.84/0.99/0.94 

(0.91; 0.86) 

0.87/0.94/0.96 

(0.94; 0.87) 

0.94/0.94/0.98 

(0.95; 0.94) 

FA 
0.81/0.91/0.90 

(0.84; 0.81) 

0.88/0.95/0.93 

(0.88; 0.88) 

0.92/0.94/0.98 

(0.97; 0.92) 

0.91/0.99/0.99 

(1.00; 0.95) 

 

 

 

5.4. Conclusion 

  In this chapter, we demonstrate the efficacy of selective fusion of structural and 

functional data for improved glaucoma detection. We first apply our labeling 

methodology to the VF data and perform vectorization process in order to obtain the VF 

data vectors. We then obtain the features from structural analysis. It is shown that our 

fractal analysis feature-based technique can exploit the shape features from functional 

data and perform the best among other feature-based techniques with corresponding 

AUROCs of FFA, WFA and FA being 0.87, 0.87 and 0.95 respectively. It is also shown 

that our proposed feature-based technique on functional analysis offers comparable 
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performance when compared to the MD method (0.98 AUROC). We also report a novel 

feature-based technique on real 2D RNFL image data based on specific ROIs. It is shown 

that using such ROIs, fractal-based techniques perform comparably to existing methods 

with AUROC of 0.92. We believe that performance of 2D RNFL method may be 

improved with the better representation of ROI such as using a circular shape. 

  We then demonstrate the efficacy of selective fusion of structural and functional 

data for improved glaucoma detection. For using our novel selective feature-based fusion, 

the global coefficients that emphasize the more informative area for 1D TSNIT RNFL 

and VF data are introduced. We then selectively choose 40% of data that most emphasize 

clusters and use only such clusters for final classification. For comparison, we compute 

the performance of the proposed selective feature-based fusion method and compare it 

with those of existing feature-based techniques such as WFA and FFA. Statistical 

analyses show that our selective fusion of the structural and functional data outperforms 

the existing WFA and FFA with AUROC being 0.98, 0.98 and 0.99 respectively. In 

addition, we also show that our proposed selective feature-based fusion method on 

structural and functional data offers better AUROC when using only MD method. 
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6. Conclusions and Future Works 

6.1. Major Contributions 

  The primary goal of this dissertation is to investigate novel feature-based methods 

for improved glaucoma detection and progression prediction. For this goal, we exploit 

novel fractal/multi-fractal features, application of multi-class classification and selective 

feature-based fusion of structural and functional data. We propose and implement novel 

fractal/multi-fractal feature extraction using two types of data such as structural (RNFL) 

and functional (VF) data. We also develop the feature-based techniques to predict 

glaucomatous progression using the novel fractal/multi-fractal features. We then 

introduced the first novel application of multi-class classification that better predicts 

glaucomatous progression than the existing nonlinear methods such as neural network 

(NN). Finally, we also showed the first novel selective feature-based fusion of structural 

and functional data.     

  Chapter 3 describes one of the major contributions of this dissertation. In this 

chapter, we obtain novel fractal/multi-fractal feature extraction to capture structural 

changes to the RNFL. Previous works show that the Fourier coefficients and wavelet-

Fourier coefficients features parameterize the shape features from the 1D TSNIT RNFL 

data 
22-23

. Such features provide better diagnostic capability of glaucoma over the 

standard machine outputs of inferior average, superior average and average RNFL 

thickness. However, our fractal/multi-fractal features better characterize the embedded 

local variation and randomness in the RNFL and thus offer enhanced diagnostic 

capability of glaucoma with 97% AUROC. We extract novel fractal/multi-fractal features 

from both the 1D TSNIT RNFL data acquired by scanning laser polarimetry (SLP) and 
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by optical coherence tomography (OCT). There is a difference between the performances 

of the fractal/multi-fractal features on SLP and OCT data 
33, 95

. It has been shown that the 

different stages of the disease and inherent difference between SLP and OCT may be 

accountable for such difference 
95

.  

  Another contribution of this dissertation as discussed in Chapter 4 involves the 

utilization of fractal/multi-fractal features for multi-class classification in predicting 

glaucomatous progression. We show that our novel fractal/multi-fractal features can 

characterize the multi-staged glaucomatous progression in structural data. We 

demonstrate progression prediction efficacy with 82% AUROC 
96

. Another key 

contribution of this dissertation is the application of multi-class classification using a 

Gaussian kernel for classifying progressors from non-progressors and ocular normal 

patients. This application of multi-class SVM classifier offers better predictive capability 

of glaucomatous progression than the existing nonlinear techniques such as neural 

network (NN) with AUROCs being 88% and 77% respectively 
96

. 

  In addition, we report a feature-based functional visual field data analysis that 

exploits a novel labeling methodology. We also report 2D feature-based techniques to 

analyze real 2D RNFL image data. For our novel 2D feature-based techniques, we 

illustrate how to obtain ROIs for better characterizing the glaucomatous damages. The 

classification performance of our real 2D feature-based analysis is 92% AUROC. 

  The final contribution of this dissertation is the efficacy of our novel selective 

feature-based fusion of respective features from structural and functional data. Statistical 

analysis shows that this fusion method offers better performance with AUROC of 99%. 

To obtain a selective feature-based fusion method, global coefficients that emphasize the 
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more informative area for 1D TSNIT RNFL and VF data are identified. We then 

selectively choose 40% of structural and functional data that are representative of all 

clusters. We use these clusters for final classification. We then compare our performance 

with other existing feature-based techniques such as FFA and WFA. Hence, we 

demonstrate the possibility of building a novel global classifier that simultaneously 

detects glaucoma and predicts glaucomatous progression utilizing this selective feature-

based fusion method. 

  In summary, this dissertation proposes novel fractal/multi-fractal feature 

extraction, multi-class SVM classification using a Gaussian kernel and a selective 

feature-based fusion method for improved glaucoma detection and glaucomatous 

progression prediction. The feature-based techniques that utilize novel fractal/multi-

fractal features outperform the standard methods and the existing feature-based 

techniques in glaucoma detection. It is also shown that the proposed feature-based 

techniques and multi-class SVM classifiers offer enhanced diagnostic capability for 

glaucomatous progression prediction. Furthermore, the proposed selective feature-based 

fusion method shows excellent performance in glaucoma detection when compared to the 

existing standard mean deviation (MD) method. 

 

6.2. Future Works 

  Glaucoma detection and glaucomatous progression prediction are patient-

dependent techniques and are often unpredictable. In order to claim a clinically important 

glaucoma detector and glaucomatous progression predictor, we need to further improve 

our algorithms to make them less patient-dependent and more robust. This will require us 
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more careful investigation on feature extraction, feature selection and feature/classifier 

fusion.  

  In Chapter 3, systematic feature-based techniques for glaucoma detection on SLP 

and OCT data are described. For our future direction, we plan to investigate the 

relationship between SLP and OCT data for obtaining better glaucoma detection. In 

Chapter 4, the use of novel fractal/multi-fractal features and multi-class classification for 

glaucomatous progression is demonstrated. As a future direction of this work, other 

multi-class prediction methodologies can be investigated. 

  In Chapter 5, a novel selective feature-based fusion method is proposed that 

exploits both the features from structural and functional data. In evaluating the proposed 

method, we have found that our simple fusion scheme can achieve slightly better when 

compared to the existing mean deviation (MD) method. For better diagnostic capability 

of glaucoma, we investigate individualized coefficients that exploit correction factors for 

individuals. We show that the utilization of the topographic correspondence between 

structural and functional data, which is expressed as the global coefficients, can 

emphasize the more informative areas of structural and functional data respectively. For 

enhanced performance of glaucoma detection and glaucomatous progression prediction, a 

customized correction factors for individuals may be obtained for comparison with the 

proposed techniques. Hence, we plan to further investigate selective fusion methods that 

exploit the individualized coefficients. 
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